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1. Overview 
 

Cost is still the main impediment to photovoltaic industry development and its prediction is thus a 
critical issue. The purpose of this paper is to find the most accurate predictive models, using 
experience curves, and to use them to build scenarios for 2020. The evaluation of models’ 
accuracy is based on a review of the literature on the limitations of experience curves and a 
cross evaluation. The cross evaluation measures the accuracy of actual future predictions 
contrary most evaluation found in the literature based on in sample evaluations. If cumulative 
production is the main explanatory variable for experience curves, we show that due to 
multicollinearity issues, scale and R&D should not be used as additional variables, while silicon 
price can increases predictions accuracy. Based on two models, with cumulative production, and 
with cumulative production and silicon price as explanatory variables, scenarios are drawn for 
module price evolution until 2020. 
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2. Reminder about the experience curve model 
 

Experience curves can have only one explanatory variable, experience, in which case we talk 
about one factor experience curve (OFEC). Other explanatory variables can be added to create 
MultiFactor Experience Curves (MFECs). We present the methodology for both types of model. 

1.1. The One Factor Experience Curve model 
 

Experience, measuring learning by doing, is always included in experience curves; it is even 
often the only one, in OFECs, according to equation (1). Cumulative production is generally used 
as a proxy for experience. 

 

Ct = C0 * Cumt
–E              (1) 

 

C is the cost of one unit of output at t 

C0 is the cost of the first unit 

Cum is the cumulative output (or another proxy of experience) at t 

E is the experience parameter. 

 

A logarithmic transformation gives the following classical linear regression equation (2), with εt 

the error term. It is generally estimated with the ordinary least square (OLS). By dropping the 
error term, we get a deterministic predictive model of cost. 

 

log(Ct) = log(C0 ) - E*log(Cumt) + εt         (2) 

 

Based on this experience parameter E, two variables have been created to give a practical 
evaluation of the cost variation corresponding to a doubling of cumulative output: the Progress 
Ratio (PR) and the learning rate (LR). The LR is the cost decrease corresponding to a doubling 
of cumulative output. 

PR = 2–E 

LR= 1 - PR 



1.2. The Multi Factor Experience Curve model 
 

To take them other cost drivers into account, other variables have been added to create MFECs. 
They are based on Berndt’s (1991) work to derive the experience curve equation from a Cobb-
Douglas cost function. In particular, considering scale, input price, learning by doing and by 
searching (without the time index for the sake of clarity): 

Ct = a Qt s .Cumt
–E.Kt

-R . Π pi,t
 βi      (3) 

 

a is a constant 

Q s stands for the scale effect, Q  the output, and s the scale index, or elasticity of the plant size1

K is the R&D based knowledge stock, and R is the R&D parameter measuring “learning by 
searching”. 

 

Π pi
 βi stands for the effects of the price of inputs i, with pi the price, and βi the elasticity of input i 

As for OFEC, a log-log transformation gives a classical linear regression equation used to 
estimate the parameters with an OLS regression and obtain a deterministic predictive model. 

3. Methods 
 

In the literature, the main argument to choose the MFEC over the OFEC is the higher R2 of the 
MFEC. However, maximizing R2 is not a good selection criterion, since it cannot decrease when 
additional variables are included; it would always lead to the selection of the model with the 
highest number of explanatory variables. Moreover, the quite high values of the coefficients 
standard errors of the MFEC from Yu et al. (2011) (29% of the value of the coefficients on 
average) cast some doubt concerning its predictive power. In this paper, we adopt a different 
approach to compare the models, based on an out of the sample cross evaluation, which really 
evaluate how the models predict future cost. 

 

3.1. Models tested 
 

                                                
1 Note that here, s, the scale index, is a constant, leading to a linear function on a log-log scale. Isoard 
and Soria (2008) suggest a different equation to account for flexible return to scale with a convex or 
concave shape on a log-log scale. 



We want to test models including cumulative capacity, and three other explanatory variables 
defined in table 1. The models are explained in table 2. Note that R&D is not included because it 
is not significant. 

Table 1 Variables used in the models 
Variable name Expression 

LogExperience log (cumulative capacity) 

LogSilicon log (silicon price) 

LogScale log (plant size) 

LogSilver log (silver price) 

 

Table 2 Models tested 
Model Explanatory variables 

1 OFEC LogCum 

2 &Silicon LogCum & LogSilicon 

3 &Silicon,Scale LogCum, LogSilicon, & LogScale 

4 &Silicon,Scale,Silver LogCum, LogSilicon, LogScale, and LogSilver 

 

3.2. Methodology 
 

The dataset consists in world average annual values of module price, cumulative capacity, plant 
size, silicon price, silver price, and R&D stock from 1976 to 2006. 

To evaluate the predictive power, we perform a cross evaluation, measuring only the accuracy of 
the predictions made for values out of the sample used to estimate the model. As experience 
curves are time series, we evaluate the predictions made after the period used to estimate the 
regression parameters. Those estimations periods are ten years long2

                                                
2 We also perform the same test based on 15 and 20 years regressions showing results consistent 
with those presented thereafter. 

, with the last year rolling 
from 1985 to 2005. Let T be the time between the estimation and the prediction expressed in 
years. Low values of T therefore correspond to short term forecast, and high values to long term 
forecast. For each T, the average accuracy of the prediction is measured by the Mean Absolute 
Percentage Error (MAPE) of all the predictions made T years ahead according to: 



𝑀𝐴𝑃𝐸(𝑇) =
100
𝑛𝑇

∗��
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Where 𝑦�𝑖 and 𝑦𝑖 are respectively the estimation and real value of the 𝑛𝑇 predictions 

Since the last available year in the data is 2006, for the first estimation of the models from 1976 
to 1985, we can evaluate the predictions from T=1 as far as T=21, but for the last estimation of 
the model, from 1996 to 2005, we can only evaluate the prediction for the following year (T=1). 
For each T, the MAPE is then the average of  𝑛𝑇 = (21 − 𝑇 + 1) values, each one based on a 
different 10 years estimation period. 

4. Results 

4.1. Best models 
 

Figure 1 shows a comparison of MAPE(T) for each model. On a short term, MFECs perform 
slightly better than the OFEC. But after 2 years, the OFEC performs better than any other model 
with additional explanatory variables. This result is strengthened by the fact that on the long 
term, MFECs also have the disadvantage of requiring more explanatory variables predictions. 
When the estimating period is longer than ten years, this result holds, although the OFEC 
performs better after 3 years with 15 years estimating periods, and 4 years with 20 years 
estimating periods, showing that MFECs require longer estimation periods. 

 

Figure 1 Comparison of MAPE(T) for each model, MAPE(T) being the mean absolute percentage error 
according to the time T between the estimation  and the prediction. Data source: Yu (2008) 
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Those results confirm that MFECs are better for short term predictions. But surprisingly, it 
suggests that an OFEC is better for long term predictions, even with accurate predictions of 
explanatory variables. The limitations of experience curves studied in section 4 suggest that this 
is due to multicollinearity. By regressing model 4 on the 1976/2006 period, we find a Variance 
Inflation Factor (VIF) of 28.1 for LogExperience, and 17.0 for LogScale, which is much higher 
than 10, the maximum acceptable VIF with a 0.1 tolerance. The VIF test shows multicollinearity 
for those two variables for any combination of explanatory variable, which confirms the 
multicollinearity for those two variables. Section 4.1. shows that since LogScale and LogR&D 
are highly correlated with LogExperience and that this correlation is constant over time, there 
omission in the models creates a bias of remaining parameters that would take their effect on 
cost into account. Consequently, excluding them wouldn’t affect the predictive power of the 
model. We therefore claim that scale and R&D shouldn’t be included in experience curves 
explaining PV modules cost. 

The estimation of model 2 on 1976/2006 gives a VIF of 3.1 for LogSilicon, suggesting that 
despite its high correlation with LogExperience, this doesn’t lead to a multicollinearity issue. We 
therefore chose to reject models 3 and 4 to keep only silicon price as possible additional 
variable. 

4.2. Selection of the best estimating period 
 

The previous evaluation is based on average values of several regressions estimated on 
different periods. We now go further by taking a look at the influence of the period used the 
estimate the models. Since the estimating periods might also include data from the last year 
available (2006), a cross evaluation study as before is not possible to have a quantitative 
criterion. Therefore, we base our choice on the value of R2. If it was not a good criterion to 
choose which model to use because it can only increase with the addition of new explanatory 
variable, it allows discriminating the estimation periods. 

Model 1 

Concerning the OFEC, the main issue is the bias of the experience parameter caused by the 
omission of silicon price. The impressive rise of silicon price starting in 2005 because of the 
silicon shortage can be considered as an unusual event which introduces a too important 
downward bias of the experience parameter. This suggests that the OFEC should be estimated 
before this period. On any period that has been tested, the period 1976/2004 indeed coincides 
with the highest R2 (0.989) and lowest standard error of the parameters. The model A is then 
defined as: 

 

 

A: OFEC estimated from 1976 to 2004 



Table 3 Result of the OFEC regression from 1976 to 2004 

 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

LogExperience 
-

0.3238485 0.0066287 -48.86 0 
-

0.3374493 
-

0.3102476 

Constant 3.803175 0.0351982 108.05 0 3.730954 3.875396 

 

Note that the LogExperience coefficient corresponds to a learning rate of 20.1% and a 95% 
confidence interval of 19.3%-20.9%. This is in line with the average learning rate found in the 
literature for experience curves based on the same data from Strategies Unlimited (20.8), 
although in the lower range. 

 

Model 2 
Concerning the MFEC with silicon price, the main issue is the important correlation between 
silicon price and cumulative capacity in the first twenty years. In the paper, we show that the 
correlation is very strong for old data, while silicon price and cumulative capacity are not 
correlated at the end of the period. This suggests that Silicon price should not be used as 
additional explanatory variable only if the estimation is done on recent data. 

For this model, the highest R2 (0.992) and the lowest standard error of the parameters indeed 
corresponds to the 1990/2006 period. Compared to this model, the addition of Scale or/and 
LogSilver is not significant at 5%, which confirm that they should not be used in the model. 2006 
correspond to the last available data, but estimation with more recent data might improve the 
quality of the model. The model B is then defined as: 

B: A MFEC with Silicon price as additional variable estimated from 1990 to 2006 

Table 4 Result of the regression with LocCum and LogSilicon as explanatory variables from 1990to 2006 

 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

LogExperience -0.3330933 0.0082307 -40.47 0 
-

0.3507464 
-

0.3154402 

LogSilicon 0.3341498 0.0228515 14.62 0 0.2851383 0.3831613 

Constant 2.776797 0.0829261 33.49 0 2.598938 2.954656 

 

4.3. Scenarios for 2020 
 

Based on model A and B, we can build prediction of module price evolution until 2020. For this 
purpose, we need prediction of the explanatory variables. The cumulative capacity prediction 



comes from EPIA (2011) and consist in a steady grow to 34.5 GW of cumulative installed 
capacity in 2020. Note that the IEA (2010) predicts a slower growth to 210 GW in 2020, but 2010 
values already show an important underestimation of 13 GW (27 GW instead of 40). We build 
two scenarios of silicon price evolution until 2020. Both scenarios take into account the historic 
silicon price from 2007 to 2011. The low scenario considers a linear silicon price decrease from 
30 $/kg in 2011 to 20 $/kg in 2020, which correspond to the lowest short term production costs 
prevision in 20113, the cost decrease being driven by scale increase, lower electricity cost, and 
technological improvement. The high scenario considers a linear silicon price increase from 30 
$/kg in 2011 to 40 $/kg in 2020 which correspond to the highest predictions found in market 
forecast4

 

. Figure 2 shows the estimations corresponding to the three models. B Low correspond 
to the model B with the low estimation of silicon price evolution, and model B High the high 
estimation.  

Figure 2 Forecast until 2020 with the model A (OFEC) and model B (MFEC with silicon price) with two 
scenarios of silicon price decrease (source: Author)

 
 

Note that this prediction is consistent with short term predictions made by IHS iSuppli5

                                                
3 Source: Sun & Wind Energy, 2011 

  that 
“from the USD$1.30 seen for the modules today (i.e. 2011), costs per watt will drop to $0.99 by 
the second quarter of 2012, $0.88 per watt by the second quarter of 2013, and $0.79 per watt by 
the second quarter of 2014”. The learning rate of 20.1% used in model A, which gives 
predictions already in the higher range of those given by model B, is quite higher than 18%, the 

4 Source: http://www.pv-magazine.com/news/details/beitrag/report-finds-silicon-market-
recovering-on-the-back-of-solar-demand_100003385/ 
5 Source: http://www.pv-magazine.com/news/details/beitrag/ihs-isuppli--c-si-module-costs-to-
fall-below-usd1-per-watt-by-2012_100003392/ 
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one used by the IEA (2010) for its predictions, meaning that it implies faster cost decrease. 
Added to the fact that the IEA’s predictions are based on a lower development of the PV 
industry, this suggests that PV module price and therefore PV electricity will decrease faster 
than the IEA(2010) predicted. 

As aforementioned, modules lifetime and reliability also have to be taken into account if PV 
electricity cost should be forecasted. 

5. Conclusions 
 

A survey of experience curves applied to photovoltaic (PV) modules on a global scale shows 
that most models so far use cumulative production, as a proxy for experience, as only 
explanatory variable. Only three studies include additional ones such as R&D, silicon price, or 
scale. 

We compare the predictive power of the models with a cross evaluation. This methodology 
measure the accuracy of predictions out of the sample used to for the model estimation, 
therefore really measuring future predictions accuracy.  It is based on a dataset of annual world 
average values of module price, silicon price, plant size, and R&D knowledge stock. Contrary to 
what is suggested in the literature, the addition of explanatory variables doesn’t improve the 
accuracy of the predictions. 

A survey of the limitations of experience curves and econometric considerations allow us to 
explain this poor performance of the addition of explanatory variables by their important 
correlation with cumulative production, leading to multicollinearity. If scale and R&D cannot be 
used as additional explanatory variables because of this multicollinearity issue, we show that 
their omission doesn’t affect the predictive power of the model since their effect is taken into 
account in the corresponding omitted variable bias. However, the correlation of silicon price with 
cumulative production is not constant, and becomes much less important after 1998. Therefore, 
this variable can be used in the model. It is quite important, since as silicon price has not a 
stable correlation with cumulative production, if it is excluded from the model, the corresponding 
omitted variable bias might affect the predictive power of the model. This is especially important 
for periods when silicon price takes “abnormal” values, such as during the silicon shortage from 
2005 to 2009. Therefore, those values shouldn’t be used to estimate a model for which silicon 
price is excluded. 

Those insights allow us to recommend the utilisation of two models. The first one explains 
module cost only by cumulative production, and should be estimated before 2005 to avoid the 
silicon shortage. The second one includes silicon price as additional explanatory variable, and 
should be estimated after 1989 to avoid the important correlation of silicon price and cumulative 
production in old data. 

Based on those two models, predictions of cumulative capacity by IEA (2010), and two 
scenarios of silicon price evolution until 2020 according to the most optimistic and pessimistic 



prediction of the market, we are able to predict the evolution of module price until 2020. The first 
model gives an average world module price of 0.8 $/Wp in 2020, while the second model is 
more optimistic, with 0.79 $/Wp in the worst case concerning silicon price, and 0.63$/Wp in the 
optimistic case. This shows that module cost evolution is quite dependent on the solar grade 
silicon market. 

Of course those models can still be improved, and in particular, market effects such as market 
power, overproduction, or incentive policies should be controlled since they influence price 
independently of cost. Moreover, it should be kept in mind that those predictions don’t take 
module quality into account, which has a great influence on PV electricity price through 
operation & maintenance cost or lifetime. 

Note that we focused on the predictive power of the model, meaning that biased parameters are 
not considered as an issue as long it doesn’t affect the accuracy of the predictions. However, 
although it might lower the predictive power, MFECs including more parameters bring a more 
precise analysis of the cost reduction process which can be helpful to design technology 
policies. Indeed, a technology policy focusing only on market development based on the 
experience curve with cumulative production as single explanatory variable might fail as other 
cost drivers such as R&D, scale, or input price wouldn’t be taken into account. 
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