



# Analysis of the Impact of Effective Competition on Supply Security In Energy Market Using Agent-based Modeling

Hamid Aghaie
PhD Student
Energy Economics Group
Vienna University of Technology

Supervisors
Reinhard Haas, Peter Palensky



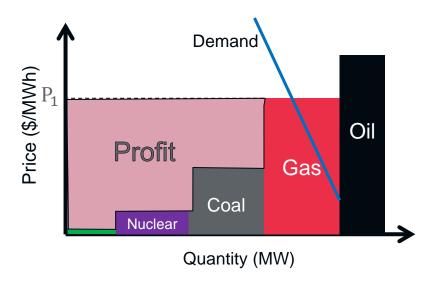
## Sequence of Presentation

- Introduction
- Problem Statement
- Literature Review
- Research Question
- Methodology
- Case Study
- Conclusion

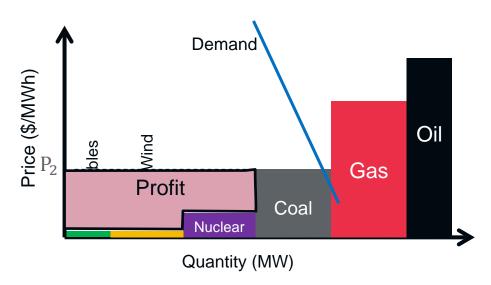


### Introduction

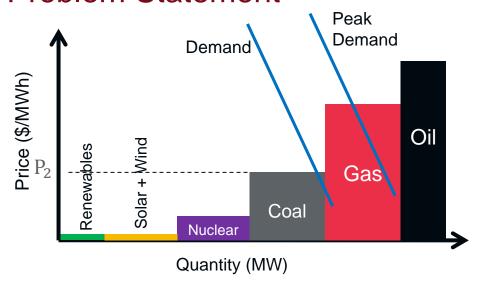
## Changing landscape:


Increasing the share of Intermittent Renewables in the electricity generation


















- Electricity produced by renewables
  - is highly fluctuating and intermittent
  - causes less utilization of conventional generators
  - causes lower market prices



- 1, 2, 3 lead to:
- Less profit (revenue) for conventional generators
- Less incentive to investment in conventional generators
- Less reliable backup in the electricity market

### Supply Security Problem

- Resource Adequacy ~ Revenue Sufficiency ~ Missing Money
- ISO (Independent System Operator) needs a way to repay this "missing money (missing profit)" to conventional generators to keep enough reliable generation on hand



### Literature Review

- Solutions are placed in 2 catagories:
- 1) Energy-only market mechansims
  - Effective competition
- 2) Capacity mechanism
  - Capacity payments
  - Strategic reserves
  - Capacity credits
  - Reliabilty options



## Market Structure: Effective Competition

Effective competition in new market design

### 4 elements

1) Effcient Scarcity Prices

#### **NOW**

- Scacity situation ocurrs rarely
- Price cap

### To Do

- Increase the frequency and duration of scarcity situations
- High price caps
- e.g. ERCOT,
  - maintain energy-only market (2012)
  - \$4500 per MWh in 2012 to \$9000 per MWh in 2015



## Market Structure: Effective Competition

### 2) Active demand side participation

- Add flexibility to the market
- e.g. Interruptible loads
- e.g. PJM market, 2000 MW in 2007 to 16000 MW in 2015 (10% of total capacity cleared in capacity auctions)

### 3) Utilization of storage facilities

Add more flexibility to the market

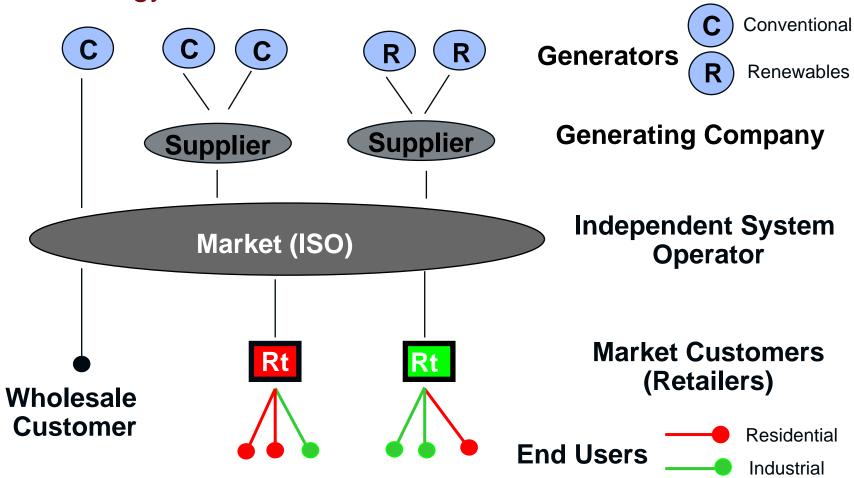
### 4) Optimized guaranteed policies

- Reduce the investment risk
- e.g. renewables support policies, introducing price caps



### **Research Question**

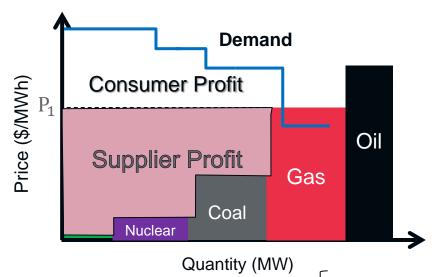
# How an effective competition in energy market can solve resource adequacy problem?




## Methodology

- Hybrid Model (Multi Agent Systems + Game Theory)
- Multi-Agent Systems (MAS)
  - Agent: an entity that acts upon the environment it inhabits
    - rationality
    - Autonomy
    - Proactiveness
    - Reactivity
    - Social ability
- Game Theory (GT): analyze the interplay between parties that may have similar, opposed, or mixed interests
- Difference between GT and MAS: Strategic Decision Making




## Methodology: Market Model





## Methodology

- Agents' strategies (actions): {Bidding price, Bidding quantity}
- Agent's goal: maximize its own individual surplus



Strategy selection: *ϵ*-Greedy

$$\mathsf{P} = \begin{cases} 1 - \epsilon + \epsilon/n \\ \epsilon/n \end{cases}$$

 $1 - \epsilon + \epsilon/n$  Action with best payoff  $\epsilon/n$ 



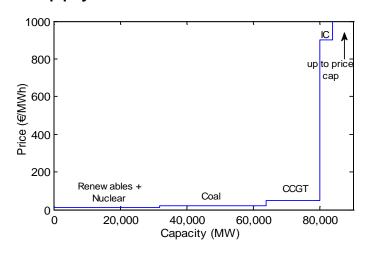
## Methodology

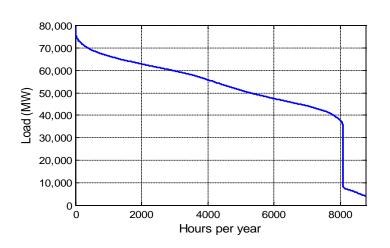
Reward Function

$$R_{a_i} = (MCP - c_{a_i}) * q_{a_i}$$

$$R_{a_i} = (d_{a_i} - MCP) * q_{a_i}$$

for Generator Agent for Consumer Agent


- *MCP*: Market Clearing Price
- $q_{a_i}$ : Bidding Quantity
- $c_{a_i}$ ,  $d_{a_i}$ : Bidding Prices


• Update Q-values :  $Q_{a_i}^{new} = (1 - \alpha) * Q_{a_i}^{old} + \alpha * R_{a_i}$ 



## Case Study

Supply and Demand





Price: 
$$P(n,t) = \begin{cases} MCP & D(n,t) < G(n,t) \\ IC & G(n,t) < D(n,t) < (1+R).G(n,t) \\ Cap & D(n,t) > (1+R).G(n,t) \end{cases}$$

MCP: Market Clearing Price IC: Interruptible Contracts

R: Percentage of demand which is available as interruptible load



## Case Study

Investment

$$\widehat{D}(n+\tau) = (1+r-e)^{\tau}.D(n)$$

$$S(n) = \max \{\widehat{D}(n+\tau) - \widehat{D}(n+\tau-1), 0\}$$

Profit

$$\pi_{j}(n,t) = \left(P(n,t) - B_{j}(n,t)\right) \cdot Q_{j}(n,t)$$

$$\sum_{t=1}^{8760} (\pi_{new}(n+\tau,t) - G_{new}(n+\tau,t) * FC_{CCGT}) \ge 0$$

$$\sum_{j=1}^{m} \sum_{t=1}^{8760} (\pi_{j}(n+\tau,t) - G_{j}(n+\tau,t) * FC_{j}) \ge 0$$



## Case Study (Results)

# Comparison of the Performance of Different Demand-side Participation Scenarios in Two Market Designs

|            | Energy-only Market                  |              | Market with Capacity Payments       |                 |
|------------|-------------------------------------|--------------|-------------------------------------|-----------------|
|            | Interruptible<br>Contracts<br>hours | Outage hours | Interruptible<br>Contracts<br>hours | Outage<br>hours |
| scenario 1 | -                                   | 47.9         | -                                   | 18              |
| scenario 2 | 38.8                                | 9.1          | 16.1                                | 1.8             |
| scenario 3 | 46.6                                | 1.3          | 18                                  | 0.02            |

Values in the table represent the average number of hours per year for each case

Scenario 1: No demand-side participation

Scenario 2: 3% of total demand is interruptible load

Scenario 3: 6% of total demand is interruptible load



## Case Study (Results)

# Comparison of the Performance of Different Price Cap Scenarios in Two Market Designs

|            | Energy-only market | Market with capacity payments |
|------------|--------------------|-------------------------------|
|            | Outage hours       | Outage hours                  |
| Scenario 4 | 137.1              | 29                            |
| Scenario 5 | 73.1               | 22.1                          |
| Scenario 6 | 47.9               | 18                            |

Values in the table represent the average number of hours per year for each case

- Scenario 4: price cap = 3000 €/MWh (current price cap in German market)
- Scenario 5: price cap = 6000 €/MWh
- Scenario 6: price cap = 9000 €/MWh (Value of Lost Load)



### Conclusion

### Purpose:

 Solve supply security problem using characteristics of market competition instead of administratively determined capacity requirements

### Effective Competition:

- Efficient Scarcity Prices
- Active Demand Side Participation
- Storage Facilities
- Optimized Guaranteed Policies

#### Method:

- Multi Agent Modeling
  - Adaptive learning
  - Strategic decision making



## Thank you