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Abstract

This paper assesses the technology neutral auctioning of Contracts for Difference (CfDs)

in the UK, with a special focus on how pre-qualifications and penalties affect bidders’

behaviour, risk aversion and bidding strategies and thus the auction outcomes in terms

of prices and realisation probability. The auctions are modeled to closely represent the

auction design foreseen by the implementing agency, the Department of Energy and Cli-

mate Change (DECC).

Two alternative designs are presented: In the first one, bidders bid their true costs

as a drop-out after being awarded would be penalized. The second one does not in-

clude a penalty. In that case, bidders are modelled with a cost function that includes a

higher level of uncertainty. The model results show that low pre-qualifications and low

or no penalties lead to an increased drop-out of agents after being awarded. For the

policy-maker this means a lower realisation rate for the auctions. Furthermore, the no-

penalty case does not yield lower prices compared to a case with a stricter penalty/pre-

qualification system in place.
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1. Introduction

Support for renewable energy (RES) in the EU has been subject to change in the last

decade. We have seen it become more market-oriented, as e.g. the sliding feed-in pre-

mium in Germany or contracts for difference in the UK which are oriented towards the

market price, rather than previous fixed feed-in tariffs or other static support systems.

Aside of introducing feed in premiums instead of feed in tariffs, the European Commis-

sion’s guidelines on state aid for environmental protection and energy 2014-2020 foresee a

gradual implementation of “competitive bidding processes” for allocating public support.

Different member states have already complied with these guidelines and started im-

plementing auction schemes and pilot rounds with different designs and also aiming for

different goals, ranging from least cost support (e.g. the Netherlands) to fostering or

maintaining actor diversity (e.g. Germany). A variety of design elements exists, to cre-

ate a tailor-made auction scheme, fit to a country’s policy goals as well as its electricity

market. Tweaking these design elements has crucial impacts on the auction outcome

and therefore, in the long term also on renewables deployment in the respective country.

An interesting question when it comes to auction design is how penalties and

pre-qualifications affect bidding behaviour and how the realisation rate is affected

by setting these penalties and pre-qualification criteria. The United Kingdom’s (UK)

market is a particularly fit setting to assess this kind of question, due to the specific

properties of its auction design. The bidding process is rather complex and there is

not a clearly visible time-line of auction rounds foreseen. Furthermore, bidding takes

place into different commissioning years - increasing insecurity of bidders in two respects:

First of all, as the competition for the respective years is quite difficult to appraise be-

forehand, winners curse from bidding into a year with a low number of participants can

occur. Secondly, no effective non-delivery penalty was in place for the first auction round.
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According to Kreiss et al. (2017) cost insecurities and potential negative consequences

in case of of non-realisation have a large influence on the a realisation rate of projects

awarded in an auction. Thus, both factors mentioned beforehand give participants in

the UK renewable energy (RES) auctions an incentive to factor non-realisation into their

bidding strategy: as the possibility of winners curse is not unlikely and as dropping out

of the auction in the case they do not break even with their submitted bid will not be

penalized.

The following paper will firstly give insights into the UK’s RES support system

and electricity market and then describe the auction design and how it is depicted in the

model. Then I model the auction and look into different bidding strategies and potential

outcomes - by taking into account how potential changes in the design of penalties and

pre-qualifications could influence lower bidders’ insecurities and impact non-realisation

rates.

2. Background

This section shortly outlines the UK’s electricity market and auction scheme as well as

the auction-theoretic background necessary for understanding the analysis. Furthermore,

agent-based modelling is explained and its suitability to assess the research question as

well as potential limitations of the approach are shown.

2.1. UK electricity market and CfD scheme

The UK has a population of around 65 million people and in 2014, the year the CfD

auction took place, its final energy consumption was 143 Mtoe (million tonnes oil equiva-

lent) electricity that made up 18.5% of the UK’s final energy consumption (26 Mtoe/339

TWh (Terrawatt hours)) according to the Office for National Statistics. Under the EU
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Directive 2009/28/EC, the UK is bound to meet 15% of energy consumption across all

sectors from renewable sources by 2020 which translates to approximately 30% in the

electricity sector. This is due to its favourable conditions for generating electricity from

renewable sources (RES-E), especially from wind power according to the Department of

Energy and Climate Change (DECC, 2009). In 2014, the RES share of electricity gen-

eration was almost 20%, and overall renewable electricity supplied 7.8% of final energy

consumption (DECC, 2015). The UK’s target for the electricity sector is likely to be

reached, whereas the country falls short in respect to the heating and transport targets.1

Interconnection currently exists with France, the Republic of Ireland, Northern Ire-

land and the Netherlands, amounting to a total capacity of 4 gigawatt (GW). More

are planned in the future, possibly to Belgium, Norway, France and Denmark, meaning

that the UK could become increasingly integrated into the wider European electricity

network (Fitch-Roy and Woodman, 2016). As the Brexit is currently being rolled out,

however, the future of this integration remains to be seen. Electricity generation and

retail markets are liberalised. However, despite some recent trends towards independent

electricity supply, electricity generation and supply in the UK remain dominated by six

vertically integrated firms often referred to as the Big Six (Fitch-Roy and Woodman,

2016). Together, the Big Six account for more than 90% of domestic electricity supply

and own approximately 70% of the UK’s generation capacity (Ofgem, 2015).

Renewable electricity has been supported since 1990. The first scheme was the so-

called Non Fossil Fuel Obligation (auction), which ran from 1990 to 1998. This was

replaced by a quota, named the Renewables Obligation (RO) in 2002. Large scale solar

(>5 MW) has been excluded from the RO in April 2015 and onshore wind in April 2016.

1UK Parliament, September 2016
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The RO will expire for all other technologies in 2017. Its replacement - the Contracts

for Difference (CfD) scheme - is an auction mechanism, and the first round of bidding

took place in late 2014 (Fitch-Roy and Woodman, 2016). In March 2016, the Govern-

ment announced further auctions for contract allocation, with up to £730 M available

for offshore wind and other less established technologies. 2

The Contracts for Difference (CfDs) are part of a wider Electricity Market Reform

package started by the UK Government in 2009. The aims of the reform were ensuring

security of supply and decarbonisation of the electricity system at least cost to consumers

(Fitch-Roy and Woodman, 2016). The original policy objective of the CfD auctions was

to increase competition within technology groups to bring down support costs and limit

producer surplus. Technology neutrality is envisaged in the future (unspecified date)

(DECC, 2011).

The CfD auctions are multi-unit, sealed-bid, uniform price auctions. Technology-

specific ceiling prices known as “administrative strike prices” are intended to represent

similar investor returns to the previous support mechanism, the Renewables Obligation

(DECC, 2013). The auction scheme furthermore allows for technology capacity minima

and maxima to be set. Auctioned volumes are determined by strict budgetary con-

straints. Budgets are capped year-by-year and thus not considering the total support

period of the awarded projects. A winning bid has to lie below the highest awarded bid

and must furthermore be comprised in the budget cap for any of the years in which a

cap has been set (Fitch-Roy and Woodman, 2016). In terms of modelling auctions, this

provides a bit challenging.

2The first of these auction rounds will be worth £290M. This round has been carried out and results
are supposed to be published in the upcoming week. However, only support for non-mature technologies
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Budgets for the first auction were divided into two “pots”, one for established and the

other for less established technologies. This actually created two simultaneous auction

processes (Fitch-Roy and Woodman, 2016). The first pot, for established technologies,

included onshore wind and solar, energy from waste with CHP, hydro (5 to 50 MW),

landfill gas and sewage gas. It consisted of £50M (e64M) for projects commissioning

from 2015/16, and an additional £15M (e19M) (i.e.£65M (e83M) in total) for projects

commissioning from 2016/17 onwards. In the following, modelling will be focused on

this pot. It has to be mentioned, however that larger amounts were set aside for the less

established technologies (i.e. £260M in total), including offshore wind, biomass CHP,

wave, tidal stream, advanced conversion technologies, anaerobic digestion and geother-

mal. In theory, a third pot for biomass conversion exists. However, no budget was

allocated to this for the first auction (Fitch-Roy and Woodman, 2016). This specific dis-

tribution of funds shows that a policy objective of DECC seems to be spurring innovation

and achieving or maintaining technological diversity in the renewables sector.

2.2. Auction Theory

Although a great variety of different auction designs and hybrid formats exists (Du-

tra and Menezes, 2002), three basic principles should be met in every auction in order

to guarantee a transparent procedure and thus a high acceptance among investors and

the public as well (Ausubel et al., 2014; Haufe and Ehrhart, 2016): Bids should be bind-

ing, the best bids will be awarded and the winning bidders receive at least their bid price.

In terms of single-unit auctions, the four most common formats are: the English auc-

tion, the Dutch auction the first-price and the second-price sealed-bid auction (Milgrom

and Weber, 1982). For multi-unit auctions, the distinction can be derived from these

formats. It can be differentiated between descending and the ascending clock auctions

has been auctioned in this second round, such that the results will only be partly of interest for the
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(dynamic) and the uniform and pay-as-bid (PAB) auctions. These formats or combi-

nations and variations of them have already been applied in RES auctions in different

countries worldwide. Single-unit auctions are used when a certain project is tendered,

commonly applied for e.g. offshore wind power auctions.3 Onshore wind power auctions

as well as auctions for large-scale solar PV are currently being implemented in several

European member states. These auctions fall into the category of multi-unit auctions.4

Since in the case of onshore wind farms and large-scale solar PV auctions, the auctioneer

procures a specific electric capacity, the procured good is defined as homogeneous from

the auctioneer’s point of view.

In the auction simulations modelled in this paper, I look at symmetric, risk-neutral

and single-project bidders. As explained beforehand, the product auctioned is a homo-

geneous good. The following overview5 of the design elements of the standard multi-unit

auction format will be limited to the properties I assess in this paper. Bidder’s valua-

tions in this specific format are modelled as independent values (IPV approach), as each

bidder draws independently from a given cost range. However, one could say that due

to the fact that cost decreases take place simultaneously and equally for all bidders, a

certain common value component also exists.

According to Kreiss et al. (2017), one of the main reasons for non-realization in

auctions, are bidders’ uncertainties concerning their project costs. The non-realization

risk can be reduced by taking various measures. The most common measures are fi-

following analysis.
3In that case, participants usually bid for the permit and support payments to realise a specific, pre-

developed offshore wind project.
4Since countries generally buy power in RES auctions, the overview will be based on the properties

of procurement auctions. In this case, the auctioneer is the buyer, and the bidders are the suppliers. In
contrast, ”classical” auction theory studies auctions to sell with the auctioneer being the seller and the
bidders as buyers. Nevertheless, the outcomes in both auction types are analogous (Klemperer, 1999).

5The concepts presented in the following are based on the overview in (Haufe and Ehrhart, 2016;
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nancial and physical pre-qualifications and penalties (Kreiss et al., 2017). While these

measures are very commonly used in practice, not a lot of theoretical literature on what

happens before and after the auction (i.e. pre-qualification processes or penalization of

delay/non-delivery) exists (Wan and Beil, 2009).

Implementing pre-qualification requirements can have ambiguous consequences. If

pre-qualification costs are sunk costs, this may discourage the participation of actors

(especially the smaller ones) by increasing the costs of participation (Del Ŕıo, 2015)

and thus reduce competition in the auction. Financial pre-qualifications are very

common in RES auctions, as e.g. in Germany, Denmark or Brazil. They help ensure

that bidders are able to realize the project in case they are awarded (Held et al., 2014).

This is due to the fact, that the bidder’s insecurity of actually being able to finance a

project is reduced by the administratively predetermined financial security. Physical

pre-qualifications are e.g. a construction permit or further country specific permits

(Kreiss et al., 2017). These requirements are supposed to ensure serious bids and plan-

ning security (Del Ŕıo and Linares, 2014). They are also employed to avoid strategic

bidding, i.e. outbidding to block others from realizing their projects (Del Ŕıo, 2015).

Outbidding means that bidders could submit several bids although planning to realize

only one of the submitted projects. This way, they can influence the price and also

hinder competitors. In general, pre-qualifications like securities prove to be effective for

achieving higher realisation rates as shown e.g. by Calveras et al. (2004).

A penalty is a necessary condition, meaning that the bidder has to pay if she is

awarded and does not comply with the expectations afterwards (Kreiss et al., 2017).

It is crucial, when setting penalties, to choose an appropriate level, as also shown e.g.

for capacity markets (Mastropietro et al., 2016). A penalty set too high will discourage
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participation, whereas low levels or no penalties would lead to ineffectiveness in the re-

alization process (Del Ŕıo, 2015). In terms of practical implementation it is crucial to

see whether the project developer is actually responsible for a delay or non-delivery or

if it occurred due to external causes (Held et al., 2014).

Larger bidders are in general more able to pay a penalty, which makes them more risk

averse and more desirable for loans, as bankruptcy (Chillemi and Mezzetti, 2009) is not

a straightforward option (which could be the case for smaller, recently founded entities).

They are also more able to pre-qualify. Without a penalty or pre-qualification in place,

bidders bid more aggressively: with a penalty system or a bid bond, the limit for losses

changes to the maximum of security and assets or penalty (Kreiss et al., 2017), meaning

that bidders are willing to incur a certain loss in order to regain their pre-qualification.

2.3. Agent-based modelling

In this section, I explain agent-based modelling (ABM) and outline the benefits of

this methodology for the present analysis. According to Bonabeau (2002), agent-based

models have certain benefits over other modelling techniques: being able to capture

emergent phenomena, providing a natural description of a system, and being flexible in

regard to changes. Moreover, Axtell (1999) highlights that ABM has the property of

establishing sufficiency theorems. As the main idea behind ABM consists of simulating

the interactions between individual agents over time (Masad and Kazil, 2015), it is im-

portant to understand what exactly defines an agent. Wooldridge and Jennings (1995)

describe agents as software-based computer systems located in some environment, who

aim to reach their design objectives by autonomously taking actions. Furthermore, they

define four major properties of agents: autonomy, social ability, reactivity, and pro-

activeness.

Del Ŕıo, 2015)
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The following overview shows past applications of ABM in energy research. Several

studies applying the ABM approach were published in energy research, whereas they

often model an electricity (spot) market with a vast amount of agents in frequently oc-

curring auctions, as e.g. power market simulations in Fraunhofer ISIs model PowerACE

(Genoese and Fichtner, 2012) or the EMLab Generation Model by TU Delft (Chappin,

2013). Furthermore, a substantial amount of literature exists where ABM has been used

to display and model complex interactions on the broader electricity market, i.e. mod-

elling different agent’s (TSOs, generators, regulatory institutions, consumers) behaviour

and their respective interacting and sometimes contradictory objective functions and

constraints, see e.g. Kiose and Voudouris (2015) and Widergren et al. (2006)

ABM has also been used to assess different market design elements and policies for

renewable subsidies, as shown in currently published research by Iychettira et al. (2017).

Auctions for renewable energy have, to our knowledge, not yet been analyzed using an

ABM design. Among the studies on agent-based electricity market models, compar-

ing PAB and uniform pricing has been a popular research question (Weidlich and Veit,

2008). Further scientific energy-related auction literature applying an ABM approach is

e.g. Kiose and Voudouris (2015), Veit et al. (2009), Bunn and Oliveira (2001), or Li and

Shi (2012) and forthcoming work by Anatolitis and Welisch (2017) among others.

Adaptation is also an important feature of agent-based modelling (van Dam et al.,

2013). As this paper focuses on the procurement auctions of renewable energies with

a very clear time horizon, the possibility of learning effects for the agents is limited.

Nevertheless, a certain amount of learning is still implemented through assumptions on

cost digression for the participating technologies.
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3. Model-based Analysis

The model-based analysis presented in the following chapters has its foundations

in auction theory. To answer specific questions of relevance to policy makers, auction

theoretic concepts have been implemented in an agent-based model, using all available

data to model the respective market and its participants very close to reality. After

introducing my methodology, its application will be shown and results discussed.

3.1. The Modelling framework

In auction theory, the bid function maps an agent’s cost for realizing the project (or

valuation of a good) to a bid price. Agents can receive b (their bid) in PAB, the highest

accepted or lowest not awarded bid in uniform pricing, or 0 depending on the auction’s

outcome and try to maximize their profit (Krishna, 2010).

In the UK CfD auctions, pay-as-clear (i.e uniform pricing) is implemented as a pric-

ing mechanism. Uniform pricing means, that all successful bidders receive the same

remuneration, which is determined by the highest awarded bid in this particular case.

The bid function is derived from auction theory. Several studies have shown, that bid-

ding one’s own cost in a multi-unit auction with uniform pricing (when the agent only

places a bid for one unit) or in a second price auction the single unit equivalent is a

weakly dominant strategy (Milgrom, 2004).

bi = ct (1)

In the simulation, agents therefore bid truthfully (their exact costs ct) in every round.

According to theory, the outcome of a functioning uniform pricing regime is incentive

compatible (Klemperer, 2004). However, a different strategy is modelled for the case

in which agents have an incentive to bid strategically instead of revealing their true

costs. The auctions in the UK are not held sequentially. Instead one auction is held and
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participants can decide in which year they want do bid into. This requires participants

to make an estimate on competition in that year and calculate their strategic bid at

that point in time. The assumptions taken are outlined in the following sections. To

stochastically approximate the outcomes of the simulation, the mean of 100 simulation

rounds per scheme is used as a final result.

To closely represent the UK auction scheme and its participants, I had to make several

decisions on reducing complexity to answer the research question, without sacrificing too

much detail of the auction design. In this section, I describe the model design and the

features of the agents and explain the specific choices: the auction design has been

simplified in terms that agents translate the annually capped budget into a certain

amount of capacity auctioned for each budget year. As agents in the UK renewables

auctions themselves calculate as to which amount of tendered capacity is represented by

the annual budget, I did the same and thereby approximated how the monetary budget

cap can be translated into an amount of MW by using the official valuation formula

depicted in the 2014 allocation framework:6

Budget impacts,yr,p = (Strike Pricecy,t −ReferencePriceyr)

×LoadFactort,yr × Y R1Fs,c,p × Capacitys,p × (Daysyr × 24) (2)

×(1− TLMyr)×RMQt × CHPQMs

Specifically, the following procedure was applied, taking into account market shares

6The official reference price assumed for the year 2015/16 is 51.06. The administratively set strike
price for onshore wind was 95 and for solar PV it was 120 in 2015/16. The capacity included into the
equation represents the capacity of the plant up to two decimal points. Load factors for onshore wind are
26.7% and for solar PV 11.1%. For the same year, the transmission loss multiplier (TLMyr) is 0.0085
and the renewable qualifying multiplier (RMQt) is 1 for both technologies as is the CHP qualifying
multiplier (CHPQMs). The factor Y R1Fs,c,p is applied to account for phased projects and equals 1
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of onshore wind and PV:7 the amount of budget has to be divided by the approximate

annual amount of subsidy received for one MW of RES. As costs and load factor dif-

fer for solar PV and onshore wind, they will be included as to their respective market

share into the calculation. This market share, will be scaled up as if the market for ma-

ture RES technologies would only consist of onshore wind and solar PV - thus ignoring

the other participating technologies to facilitate the assessment of the auction outcomes:8

Capacity =
Budget

BI PVs,yr,p × 0.38 +BI onshores,yr,p × 0.62
(3)

BI is the budget impact of the respective technology calculated according to the of-

ficial valuation formula. As mentioned, this assumption is simplifying. However, agents

bidding in the auctions also perform some scaling of the budget to their expectations of

capacity tendered and the potential competition. This calculation procedure thus yields

an expected capacity that all agents can include into their respective bidding function

to maximize their possibility of winning and their profits. Furthermore, as seen in the

outcome of the CfD auction that took place in 2014, only onshore wind and solar PV

were awarded in the pot 1 for mature technologies. This shows that the modelled sim-

plification actually matches the empirical evidence. The estimated capacity according

to my calculations amounts to 565 MW in 2015/16 (£50M). For the remaining years

the estimated capacity is derived from a budget of £65M per year (inflated by a fac-

tor of 1.0195). This translates to 734.5 MW for the following delivery years (2016/17,

otherwise. For simplification purposes, I leave it at 1, assuming that all projects participate for the full
year. The year 2015/16 has 365 days.

7Pot 1 (mature technologies) has been split among these two technologies and energy from waste with
CHP, hydro, landfill gas and sewage gas. As however none of these technologies were awarded in the first
auction round and due to simplification purposes, it will be assumed that only onshore wind and solar PV
projects bid into the pot 1 technology auction. As in the first auction, no capacity minima or maxima were
set for specific technologies in pot 1, both technologies compete for the whole pot in the modelled auction.

8Taking the installed capacity shares of onshore wind and solar PV from the October 2014, where the
first allocation round took place, this yields the following: 5,028 MW of PV were installed according to
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2017/18, 2018/19, 2019/20, 2020/21) before being inflated. For simplification purposes,

I take these capacities as an approximation, without factoring in an inflation rate.

The pricing rule, as described beforehand, is pay-as-clear (uniform pricing within

each year). A separate price can be determined for technologies for which a minimum

volume has been set, unless the general clearing price for that year is higher than the

clearing price for the protected technology (DECC, 2013). As this however was not the

case for mature technologies in the UK auction, I instead assume wind onshore and solar

PV agents competing in one auction.

The distribution of the agents is as follows. First of all, I take the 2014 capac-

ity shares for solar PV and onshore wind bidders as calculated beforehand to estimate

the share of bidders on average: 21.5 % for solar PV and 78.5 % for wind onshore in

2014. In terms of the number of bidders, there was no information available, so I had to

make an estimate on the wind and PV sector in the UK using the official statistics by

DECC). As the bidding volume was not reached in any of the bidding years, I assume

participation to be rather low in the auctions, with 1,025 MW participating for the first

bidding year and a slight increase in each upcoming year9. To approximate the size of

participating projects, I resort to the auction results as shown in the Appendix 5. All

of the assumptions on the bidders are shown in Table 1.

Next, to introduce variation and show a realistic range of participants, I model four

types of bidders, i.e. a strong and a weak type for each technology who differ in their cost

UK government statistics (DECC) and 8,536 MW of onshore wind, also according to DECC. Deducting
the small-scale installations below 5 MW which receive a FiT (2,802 MW for solar PV and 433 MW for
onshore wind), this yields 8,130 MW for onshore wind and 2,226 MW for solar PV. Assuming that the
two technologies make up 100 % of all auction participants for the mature technology pot, we thus have
a share of around 78.5 % onshore wind bidders and 21.5 % solar PV bidders.

9This increase is due to two facts. Firstly, the budget in the first year is lower. Secondly, later
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distribution. Long-term bidding behaviour cannot be differentiated, as we are looking

at a one-shot auction. Table 1 describes the agent’s characteristics (data on costs has

been taken from BEIS):

Table 1: Agent distribution

Agent type Wind strong Wind weak PV strong PV weak

Average number of bid-
ders first delivery year

10 10 15 15

New random draw of
bidders per delivery
year

0-2 0-2 0-2 0-2

Range of capacity bid
[MW]

5-15 5-15 5-50 5-50

Cost distribution
[p/kWh]

4.7-6.2 6.2-7.6 7.1 - 8 8 - 9.4

Cost digression 1.95% per year piecewise: (7.5% first
year, then 2.5%)

Aside of their different prerequisites, the two technologies compared also differ in

the development of their respective costs. As so far only one auction round has been

executed in the UK, learning of agents and cost digression over several rounds could not

be taken into account. However, assumptions on technology cost digression should have

influenced bidder’s valuations of future delivery years - as there was a possibility to bid

into several financial years. In the model this is implemented as four bidding rounds

with a different cost digression for onshore wind and solar PV but without learning from

previous auction rounds. Finally, the revealed costs (which can lie below the true costs),

that agent’s draw their bid from in the non-penalty auction case are assumed to be

drawn from a larger range of insecurity as explained in the following.

bidding years potentially attract more participants, as especially for wind power, longer lead times for
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According to IRENA estimates, costs for onshore wind could drop between 9 and

22% by 2020. Taking the average, this would mean around 1.95 % per delivery year

starting 2015/16. For solar PV, a quite steep decrease has been observed in the past

year, which is likely to have already been anticipated at the point in time of the auction.

However, future expectations for module price developments are rather cautious and do

not expect the extreme price decrease to continue, s.t. a piecewise linear digression for

solar PV costs is implemented which starts with a stronger decrease but then stays flat-

ter until 2020. In total, DECC (2015) estimates that the decrease in the LCOE will be

around 20% from 2015 to 2020 (KPMG, 2015). Taking into account their calculations, I

assume a 7.5% decline between 2015 and 2016 and then a 2.5% decline for the following

rounds.

Under the pay-as-clear pricing mechanism, the bid function in theory should be

the weakly dominant strategy of bidding one’s true costs (bi = ct). However, as the

UK auctions’ outcome is based on the highest accepted bid, auction participants have

the incentive to exaggerate their true costs, due to the fact that their own bid might be

the highest accepted one and thus determine the clearing price (Ausubel, 2008). At the

same time, insecurity exists about the level of competition in the respective years that

participants can bid into. This could also lead to strategic underbidding (depending on

the expectations on the clearing price, the number of competitors, their costs and their

bidding strategies) which in turn could lead to winner’s curse for some bidders. Finally,

a bid that does not break even can be rejected easily, because no actual penalty exists.

Summarizing, the UK CfD auction has some design features, that incentivize strategic

behaviour.
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The type of strategic behaviour I want to investigate is underbidding due to lack

of penalties or pre-qualification criteria and its impacts on auction outcomes - prices,

realisation rates and agent distribution. As shown by Kreiss et al. (2017) similar con-

siderations hold for the case of pre-qualifications, if they also count as a loss for the

bidder in case of non-realisation. Due to simplification purposes, in the ongoing parts, I

mention mostly just penalties, whereas from a theoretical point of view, these impacts

can also be expected for the loss of pre-qualifications (see e.g. Waehrer (1995)).

As explained in the theoretical section, bidding behaviour changes, depending on

whether the bidder factors in a penalty or not. I therefore compare two cases: one

where bidders bid their costs and in which a drop-out would be penalized. The second

one does not include a penalty (or a financial pre-qualification that could be lost), i.e.

if bidders refuse to accept the bid afterwards, i.e. because of winners’ curse as they

strategically underbid and now cannot cover their costs, because the final strike price is

too low, they will not be penalized. In this case, bidders are modelled with a different

bidding function: the function in the system with a functioning penalty/pre-qualification

has lower insecurity than the one without. Specifically, this means that the bidder re-

ceives her signal and can willingly chose to bid from the lower range of her cost signal

distribution, i.e. acting more risk-loving than a bidder for whom defaulting comes at a

cost. If the auction outcome is not favourable for the bidder (i.e. negative profit), she

does not accept the bid.

In the model this is implemented as follows. First of all, a default round is executed

to show how a pay-as-clear auction with a functioning penalty scheme would have per-

formed. In this auction, agents bid their true costs according to their signal. Then I

model a no-penalty case. In this case, the bidder’s cost range contains more insecu-
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rity, increasing the likelihood that they submit a bid that is below their true costs. If

the final strike price however lies above their actual costs, the bidders default without

consequence. So the bidder receives a signal x with an uncertainty factor δ:

y = x+ δ where δ ∈ [−ε, ε] (4)

The bidding function resulting is:

b2(x) = x− δ (5)

Due to the fact, that the bidder is able to default10, she is able to submit a bid in

the lower bound of the range of her signal, even though it might result in a loss. These

equations are adaptations of Board (2007). The distribution of the uncertainty factor is

assumed to be common knowledge (see e.g. Parlane (2003)).

There is uncertainty that occurs for bidders trying to estimate the competition and

price level for several budget years, i.e. due to the one-shot auction format However,

according to theory, the expected revenue is on average the same for sequential or one-

shot auctions, or at least its effect cannot be determined (see e.g.Hausch (1986) among

others). I therefore, take into account price predictions for RES technologies and expec-

tations on competition levels. In the appendix (5), the auction results are shown and a

further explanation is given, why these results offer too little insight to actually “reverse

engineer” bidder’s expectations on competition in different bidding years, based solely

on these results. Mezzetti et al. (2008) find that whether or not revenue for the seller

is higher (i.e. in our case lower support costs for the auctioning body) in sequential

or one-shot auctions, depends on whether the informational effect of executing several

construction are preferential.
10According to Parlane (2003) in a second-price auction, which is the single unit equivalent to the
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rounds outweighs the so called “low-balling” effect, which yields lower prices (in our case

higher support costs) in the first round.

In summary, this leads to two cases that were simulated: a one-shot, no penalty

auction, a one-shot auction with a penalty. In the non-penalty case, the bidder can bid

in the lower area of her received signal and thus increases the probability of incurring a

loss and defaulting.

3.2. Modelling results

As explained beforehand, the model is run for a standard uniform pricing scheme to

provide results of an auction with a functioning penalty system that enforces bidders’

compliance and thus induces them to bid truthfully. The results of this uniform pricing

scheme are then contrasted with the outcome of a uniform pricing scheme, where bidders

are able to default without penalty after being awarded, given that the strike price is

below their true costs.

Another factor that increases insecurity for the auctioneer as well as for the bidders,

is the estimation of competition levels for several delivery years (Fitch-Roy and Wood-

man, 2016). Bidders have the possibility, in the UK auction scheme, to bid into several

years, however not knowing how many other bidders will be competing with them for

each of the budgets. If they bid into a year with low competition and strategically un-

derbid, this increases the likelihood of experiencing winners’ curse. As we model bidders

to bid their true costs, according to theory, this factor will not be taken into account. It

could, however, in reality, increase the risk of defaulting even further.

The following graphs show how the strike price changes in the auction scheme with

uniform pricing auction, when bidders face limited liability (reduced or no loss) for defaulting, there is
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and without penalty. The expected default rate in the non-penalty case is furthermore

shown in Figure 2.

a strictly positive probability to do so. According to Waehrer (1995) a model of limited liability can be
interpreted equivalently to a model of a lost deposit, making this applicable to the UK CfD auction model.
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Figure 1: Modelling results

The model results show that not factoring in a penalty can lead bidders to bid too

low (the same holds for the lack of pre-qualification criteria). If they experience winners’

23



curse as a result, they default. This leads to an increased drop-out of agents after being

awarded. For the policy-maker this means a lower realisation rate from the auctions.

Figure 2: Modelled dropout rate

The most important findings from comparing the different modelling runs are the

price differences and the differences in realisation probability. One can interestingly ob-

serve, that the strike price is slightly higher in the no penalty case in the beginning, but

then reaches slightly lower levels than the no-penalty case. Overall, there is no signifi-

cant difference to be seen. The capacity awarded is comparable for the penalty and the

non-penalty case, however with roughly 1 bidder dropping out per bidding year in the

non-penalty case, on average 23 MW will not be built per year and have to be deducted.

Furthermore, comparing the average profit shows that in the non-penalty case, bidders

achieve a larger profit than in the case where a functioning penalty is in place. This

difference is however marginal.
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4. Discussion

As the UK CfD auctions’ outcome is based on the highest accepted bid, auction

participants have the incentive to bid strategically, due to the fact that their own bid

might be the highest accepted one and thus determine the clearing price (Ausubel, 2008).

This could be a factor which influences the bidding behaviour, i.e. inducing the agent

to bid above her costs. It is interesting to see, that the outcome of the non-penalty case

does not show lower prices on average. Furthermore, a certain amount of participants

underbid and then drop out in the model. As there is no information on realisation

rates of the UK auction thus far, it remains to be verified whether this will actually be

the case. However, extremely low strike prices for the first delivery year (£50/MWh)

were observed which are unlikely to allow bidders to cover their costs. In general, one

can conclude from the theoretical literature, the empirical outcomes and the auction

modelling, that the auction outcome is less predictable and capacity expansion goals are

more likely to not be achieved when the auction design allows bidders to bid strategically

without consequences.

In the empirical outcomes, it could be also observed, that the level of competition was

quite fluctuating between the different auction rounds. This shows, that bidder’s insecu-

rities rise, when they have little knowledge of the competition that they can expect in a

certain delivery year. Learning effects, i.e. technological but also from previous auction

rounds are important and should be made use of in designing an auction scheme. From a

policy-maker perspective it thus has to be assessed, whether the administrative effort of

holding e.g. annual auctions instead, to increase stability actually outweighs the benefits

of more balanced participation and of more accurate and potentially lower costs in later

auction rounds. A further advantage of such a scheme is that it allows the auctioneer to
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adapt better to technological or market developments, by changing auctioned capacities

or adapting the ceiling price. The second auction round in the UK only took place for

non-mature (Pot II) technologies, so the empirical results will unfortunately not provide

further input data to refine the modelling of the mature technology auctions. However

it will be interesting to see, if some general learning effects among participants will be

observable.

The aim of this paper is to provide an understanding of auctions for RES and how de-

sign of penalties and pre-qualifications changes auction outcomes. Therefore, the choice

of methodology needed to be one that allows deeper insights into the specific settings.

While econometric analysis would also be a very interesting complementary tool to as-

sess the nexus in auctions for renewable energy, there is currently a lack of empirical

data to allow us the usage of this methodology. Theoretical analysis, from an auction

or game theoretical perspective is a further interesting choice of methodology which al-

lows very interesting insights. The theoretical analysis however usually requires to limit

the assessment by many factors, which then lowers its empirical applicability and the

direct derivation of policy implications. As shown, ABM has its limitations. However,

as this paper aims to provide policy relevant results rather than adding to theoretical

expansions of auction theory, the approach proves to be the most suitable for the given

research question.

The modelling of auction schemes is of course to a large part dependent on the model’s

input parameters. As auctions for renewable energy are a relatively new phenomenon

especially in Europe and as the energy market as well as technological development are

constantly changing in sometimes unforeseen ways, the model results cannot and are not

aiming to provide accurate predictions of future auction outcomes. However, especially

by combining agent based modelling, which allows quite precise depictions of human
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behaviour, with an auction theoretic background, we receive insights which are valuable

for policy makers looking into designing or improving an auction scheme. Specifically the

result showing that the no penalty case lead to drop-out and has no advantage in terms

of lower prices, is quite useful for application of future policies. Overall, the analysis

provides a novel approach of looking into renewables auctions and their specific design

features and adds some interesting findings to the existing literature.

5. Conclusions

This paper presents an agent-based modelling approach to assess the impact of penal-

ties and pre-qualifications in the UK CfD auction scheme for renewable energy. An auc-

tion theoretic framework is part of the model, as are specific characteristics of the UK

electricity market and the market participants. Policy makers receive important insights

from this analysis on how to design their auction policies according to their respective

goals. While risking a reduced realisation rate, according to the model results, lower

prices cannot be achieved in auctions with little or no pre-qualifications or no penalty

for drop-out. If achieving a certain amount of installed capacity is important to the

commissioning authority, higher pre-qualifications or an efficient penalty system could

ensure this, as drop-out can be decreased and strategic underbidding avoided.

Further research is planned, to assess in more detail how the participant’s structure

changes in different scenarios with or without pre-qualifications or penalties. It would

also be interesting to empirically assess and contrast the first and second round, espe-

cially as the auction scheme’s design has not been changed, and look into learning effects

and their impact on agent behaviour.
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Appendix

Empirical outcomes and elaborations on competition

Bidders can bid into different years, which is implemented as a sequential auction

without learning the previous results but with some assumptions on cost decrease in

future financial years. This cost decrease differs by technology. Finally, assumptions on

competition have to be made. This is a crucial insecurity for bidders as well as for the

auctioneer. As estimating the competition for a future auction round is quite complex,

especially when it comes to a one-shot auction for different bidding years, it is difficult

to derive and model one particular strategy and assume that all bidders have followed it.

Looking into possibilities for “reverse engineering” potential assumptions of bidders

on the respective competition in the rounds (according to a) the strike price and b) the

number of bids submitted in that round), led me to looking into the auction results. The

following table shows the auction outcomes for the delivery years:

Table 2: Delivery years

Delivery year 2015/16 2016/17 2017/18 2018/19

Capacity auctioned 565 MW 734.5 MW 734.5 MW 734.5 MW

Ceiling price onshore wind (£/MW) 95 95 95 90

Ceiling price solar PV (£/MW) 120 120 115 110

Strike price (£/MW) 50 79.23 79.99 82.5

Capacity awarded onshore wind 0 45 77.5 566.05

Capacity awarded solar PV 32.88 38.6 0 0

Trying to derive agent’s expectations on competition levels from these outcomes

is a complex task. The extremely low strike price for the first delivery year indicates

winners’ curse and the assumption of a higher level of competition than actually occurred.
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Overall, most bidders bid into the last delivery year 2018/19, which is likely due to the

fact that these projects are large wind farms which need a long lead time for construction.

However, in general competition was low overall. As these results do not allow drawing

unambiguous conclusions on bidder’s expectations, I instead rely on the auction theory

to model bidder’s uncertainty in their bidding function.

Complete model results for all bidding years

The following table contrasts the model results of the two cases (average values of

100 simulation rounds).

Table 3: Auction model results (Uniform pricing with penalty)

Bidding year 2015/16 2016/17 2017/18 2018/19 2019/20

Capacity awarded 582.86 748.68 750.99 749.57 749.3

Awarded bidders solar
PV

0 1 1 1 1

Awarded bidders on-
shore wind

20 25 24 24 25

Strike price (p/kWh) 6.73 7.1 6.83 6.64 6.48

Average profit 0.97 1.19 1.10 1.08 1.05

Table 4: Auction model results (Uniform pricing without penalty)

Bidding year 2015/16 2016/17 2017/18 2018/19 2019/20

Capacity awarded 580.59 747.97 749.55 751.58 751.16

Awarded bidders solar
PV

0 1 1 1 0

Awarded bidders on-
shore wind

19 24 24 24 24

Strike price (p/kWh) 6.7 7.08 6.82 6.54 6.38

Average profit 0.96 1.21 1.12 1.03 1.0

Drop out 1 1 1 1 1
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