
Efficiency Market Efficiency and optimal hedge ratio of

the Ethanol Market

HACHE Emmanuel∗ † ‡ PARIS Anthony† § ¶

Preliminary Draft
June 2017

Abstract

The aim of this paper is to study the biofuel price dynamic in the U.S.
ethanol market as well as the optimal hedging strategy. By first using statisti-
cal and econometrical tools, we attempt to identify the long term relationship
between ethanol spot prices and the prices of futures contracts on the Chicago
Board of Trade (CBOT). Subsequently we model the short term dynamics be-
tween these two prices and on this basis with a Markov switching Vectorial
Error Correction model (Ms-VECM). In addition, with a GJR-MGarch error
structure, we highlight the ability of our model to outperform a large wide of
specifications in hedging.

JEL Classification : Q41, Q42, G15, C41
Keywords : Ethanol prices, Future markets, Markov switching regime models, Hedge
ratio

∗Corresponding author. Tel.: +33 1 47 52 67 49; fax: +33 1 47 52 70 66. E-mail address:
emmanuel.hache@ifpen.fr.

†IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
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1 Introduction

Ethanol is derived from different agricultural products (cassava, corn, hemp,
sugar beet or sugarcane) and has been increasingly added to gasoline blends for
several reasons: (i) it helps to reduce green house gases emissions (GHG) in the
transportation sector; (ii) produced with agricultural feedstock, ethanol can be seen
as a renewable energy and (iii) from a technical point of view the use of ethanol
boosts the octane numbers and leads to an improvement of the thermal engine effi-
ciency. All these factors contributed to the development of ethanol’s use worldwide.

After the increase of ethanol production and consumption in the U.S. in the first
part of the last decade, futures contracts on corn based ethanol were launched on
March, 23th 2005 on the Chicago Board Of Trade. These derivatives markets allow
commercial agents to reduce their price risk exposure with hedging strategy. There
is an extensive literature on the optimal hedge ratio for an efficient hedging strategy
with, for example, Lien and Yang (2008), Alizadeh et al. (2008), Lee (2010) or Hanly
(2017) about energy markets. This hedge ratio determines the number of futures
contract to buy or sell for one unit of the underlying asset to minimize variance of
the hedged portfolio returns. The hedge ratio is initially defined as the estimated
coefficient between spot and futures prices changes based on Ordinary Least Squares
(OLS) estimation (Ederington, 1979) i.e. the ratio of the unconditional spot and
futures price changes covariance over the unconditional variance of the futures price
changes. It then derives from Multivariate Generalised AutoRegressive Conditional
Heteroscedasticity (MGarch) model proposed by Engle and Kroner (1995) and is
computed conditional second moments at each point of time (Kroner and Sultan,
1993). This dynamic hedge ratio outperforms OLS based hedge ratio by integration
of new information arrivals over time.

Another feature of futures market analysed in the literature is its efficiency.
First, following works of Kaldor (1939), Working (1948) Brennan (1958) and Telser
(1958), among others, spot and futures prices should be equal adjusted for the cost
of carry. According to this literature, the potential difference between this relation-
ship is instantaneously compensated by arbitrageur agents. Second, Garbade and
Silber (1983) relax this latter hypothesis and the unit relationship between spot and
futures prices is then valid only in the long-run. Finally, Figuerola-Ferretti and Gon-
zalo (2010) integrate convenience yield, i.e. the premium attributed by agents to
physically hold the commodity instead of holding futures contract. Their theoretical
framework allows a long-term relationship with a non-unit coefficient between spot
and futures prices.

Our work is constructed in two part. First, we propose an overview of U.S
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ethanol markets and study long-run dynamics between ethanol spot and futures
prices in order to analyse the efficiency market hypothesis. Second, we compute a
large wide of time-varying hedge ratios with different econometric models to look
for the optimal hedging strategy for ethanol commercial agents. In addition, we
analyse the ability of the gasoline futures market to hedge ethanol spot price risk.
To optimize hedging strategy, we allow the spot-futures ethanol prices system to
switch between two states governed by a Markov chain for both the short-run and
the conditional variance processes. Hamilton (1989) proposes the Markov Switch-
ing model while Krolzig (1999)extends this specification for Vector AutoRegressive
Model. By including structural breaks in the variance equation, we take into account
the high volatility persistence (Lamoureux and Lastrapes, 1990). With structural
breaks in the short-run dynamics, we allow for time-varying behaviour in the ad-
justment to the equilibrium and the short-run dynamic processes. Therefore, we
include an informational link between between mean and volatility processes across
each market’s states (Alizadeh et al., 2008). In addition, we include asymmetric
behaviour in the variance equation to take into account different responses to new
information according to the past shocks sign (Brooks et al., 2002). The asymmetry
is included with the GJR framework (Glosten et al., 1993). Therefore, we esti-
mate a Markov switching Vector Error Correction model with a GJR-MGarch error
structure (Ms-VECM-GJR-MGarch). Finally, we access that the use of Johansen
(1988)’s cointegration procedures could lead an estimation bias. Indeed, it requires
assumptions regarding the short-run dynamic whose must be a linear process while
we assume a non-linear dynamic in short-run and variance equations. We propose
to use the Nielsen (2010)’s non parametric cointegration procedure whose does not
require model specification and we analyse its ability to improve hedging strategy.

The main contributions of this work are five-fold. First, we are able to analyse
both market efficiency and dynamic hedge ratio concerning the ethanol market. To
our best knowledge, our work is the first to check efficiency market hypothesis about
the ethanol market. Second, we include adjustment to long-term equilibrium and
regimes shifts, as Alizadeh et al. (2008), short-run dynamic between spot and fu-
tures price changes as in Salvador and Arago (2014) and asymmetric behaviour of
the variance process, as Brooks et al. (2002). Third, we go further than Salvador
and Arago (2014) by allow short-run dynamic between prices to be state dependent.
Fourth, we propose to use the nonparametric cointegration approach of Nielsen
(2010), in addition to Johansen (1988)’s cointegration, to analyse the effect of this
recent approach on hedging strategy performance. Five, we check the performance
of a cross-hedging strategy with the gasoline futures markets. Indeed, Franken and
Parcell (2003) highlights its efficiency while Dahlgran (2009) concludes to opposite
results.

In the first section, we present a brief literature review on storable commodity
market efficiency and hedging-ratio estimation. In the second section, we present
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data and the Markov switching Vector Error Correction model (Ms-VECM-GJR-
MGarch). The third section overviews the U.S. ethanol market and analyses its effi-
ciency. The fourth section presents empirical results about optimal hedging strategy.
The main conclusions are summarised in the final section.

2 A brief overview of literature

Following works of Kaldor (1939), Working (1948), Brennan (1958) and Telser
(1958), spot and futures prices of a storable commodity should be equal. The dif-
ference between these prices is explained by the cost of storage and the interest rate
as,

F T
t = Stexp[(rt + s̄)(T − t)] (1)

and with a log-transformation,

fT
t = st + (rt + s̄)(T − t) (2)

Here, F T
t (resp. fT

t ) is the price (resp. log-price) of futures contract at the time t
for a maturity T . St (resp. st) is the spot price (resp. log-price). rt and s̄ refer
to the risk-free interest rate and the cost of carry supposed constant, respectively.
According to this literature, the potential difference between this relationship is in-
stantaneously compensated by arbitrageur agents.

The hypothesis of an instantaneous compensation by the arbitrageur agents ac-
tivities is relaxed by Garbade and Silber (1983). They mention that the unit rela-
tionship between spot and futures prices are valid only in the long-term. Arbitrageur
agents operate on the markets only if the spread between these prices is large enough.
The elasticity of their action to the spread depends on the cost of carry, the transac-
tion costs, etc. In addition, they show that new information is integrated by futures
market faster than the underlying spot market leading to a causality from futures
to spot prices, despite some reverse information flows. These feature is call the price
discovery role of futures market or the informational efficiency.

Figuerola-Ferretti and Gonzalo (2010) extent this theory by integrating the con-
venience yield, i.e. the premium attributed by agents to physically hold the commod-
ity instead of holding futures contract. It depends on various markets characteristics
as spot market condition, transaction costs or cost of carrying commodity, among
others.1 With a constant free-risk interest rate, one-period futures contract and the
approximation of the convenience yield, yt, used by these authors, as

yt = γ1st − γ2ft (3)

1See Routledge et al (2000) or Heaney (2002) for more details on the convenience yield.
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equation 2 becomes

ft =
1 − γ1

1 − γ2
st +

r̄ + s̄

1 − γ2
(4)

Their theoretical framework allows a long-term relationship with a non-unit coeffi-
cient between spot and futures prices. In addition, they mention that the coefficient
value depend on the spot market condition. The parameter is greater (resp. smaller)
than unity if the spot market is in contango (resp. backwardation).

Literature about the estimation of an optimal hedge ratio has been developed
since the seminal work of Ederington (1979) in which he proposes to use the esti-
mated coefficient between changes in spot and future prices with Ordinary Least
Square estimator. However, this hedge ratio is unsatisfactory for some markets
(Cecchetti et al., 1988; Myers and Thompson, 1989). Baillie and Myers (1991) and
Kroner and Sultan (1993) state that the hedge ratio should be time-varying based
on the time-varying distribution of many asset prices. They propose to compute
this dynamic optimal hedge ratio for each period by taking into account all past
information such as

δt|Ωt−1 =
σt−1(ΔFt−1, ΔSt−1)

σ2
t−1(ΔFt−1)

(5)

Many studies estimate this dynamic hedge ratio with multivariate GARCH model
proposed by Engle and Kroner (1995) as, for instance, Kroner and Sultan (1993),
Garcia et al. (1995) or Kavussanos and Nomikos (2000). Some studies show an im-
provement of this dynamic hedge ratio compared to the constant formulation with
a improvement degree depending on the market and the futures maturity studied
(Lien and Tse, 2002).

In addition, the estimation of the dynamic hedge ratio should integrate the pos-
sible existence of a cointegrating relationship between spot and futures prices. Kro-
ner and Sultan (1993), Ghosh (1993), Chou et al. (1996) or Lien (1996) highlighted
an underestimated hedge ratio if this characteristic is not integrated. In addition,
Brooks et al. (2002) show the improvements of the hedge ratio effectiveness with
the integration of the asymmetric volatility response against positive and negative
shocks, i.e. the leveraged effect. Furthermore, the conditional mean (Sarno and
Valente, 2000) and variance (Lamoureux and Lastrapes, 1990) estimations can be
biased if regime shifts exist. Thus, an improvement of the hedge ratio effectiveness
can be done by integrating regime shifts in the estimation. Lee and Yoder (2007a),
Lee and Yoder (2007b) include regime shifts in the variance process and show an
improvement – but not significant – of the hedge ratio effectiveness. Alizadeh et
al. (2008) extent this model by integrating regime shifts in variance and conditional
mean processes and highlight a significant effectiveness improvement for most of the
markets studied. Finally, Salvador and Arago (2014) propose to incorporate the
regime shifts, the cointegrating relationship and the leveraged effect in the same
model in order to estimate an optimal dynamic hedge ratio. In addition, they in-
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corporate the short-run dynamic between spot and futures price changes.

The literature concerning hedging strategy is well developed about energy mar-
kets with, for instance, Lien and Yang (2008) for heating and crude oils markets,
Alizadeh et al. (2008) about the crude oil, unleaded gasoline and heating oil mar-
kets, Hanly (2017) with WTI and Brent crude oils, natural gas, unleaded gasoline,
heating oil and gasoil. However, hedging literature about ethanol market is very
scarce. Franken and Parcell (2003) highlight the cross-hedging efficiency between
ethanol spot price and unleaded gasoline futures markets. However, while they
correct estimation about autocorrelation and heteroscedasticity, they do not incor-
porate error correction term, regime switching and time-varying variance process.
Finally, Dahlgran (2009) compares direct hedging for ethanol commercial agents
with cross-hedging strategy with unleaded and RBOB gasoline futures markets. He
shows that the direct hedging strategy outperforms cross-hedging for four-week, and
more, hedge horizon.

3 Data and methodology

The econometric analysis covers the relationship between the spot price and the
futures price of ethanol. As transaction volumes have risen, in particular for the
shortest terms, we have focussed on the relationship between the spot price and
the price for two-month forward contracts. The data studied are related to the
ethanol on the North American market: the spot price for ethanol (Ethanol USGC
barge/rail fob Houston), the futures price on the Chicago Board of Trade (CBOT)
as well as the transaction volumes and open interest in the same market. Except the
spot price of ethanol coming from Argus, these pieces of information are all in the
public domain, and were drawn from the U.S. Energy Information Administration,
from the CBOT and from the weekly market business reports of the Commodity
Futures Trading Commission (CFTC). The data cover the period from July 2008
to December 2016. The sample thus contains 468 weekly observations. The prices
are expressed in U.S. dollars per gallon and are log-transformed. Table 1 presents
some descriptive statistics and main tests results. During the studied period, the
spot and futures prices series have a mean of 0.73 and 0.65, i.e. 2.08 and 1.91 dollars
per gallon, and a standard errors of 0.22 and 0.21. Unit root tests conclude to the
stationarity of spot and futures prices series in their first-difference. In view of con-
flicting results for spot price series in level, we apply the Perron (1990)’s unit root
test2 whose confirms its non-stationarity with a break in mean on March, 12th 2014.
In addition, the Ljung-Box (1978)’s test confirms the presence of autocorrelation in

2We choose this test in view of series characteristics, i.e. the absence of trend and a potential
break in mean. We present results with Innovational-Outlier model for break date determination.
Results with Additional-Outlier model are close.
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most cases. Finally, the ARCH test conclude to the presence of heteroscedasticity.
The last two results justify the choice of a specification with autoregressive terms
and heteroscedastic errors.

Table 1: Summary statistics and unit root test

Variables
Levels First-differences

Spot Futures Spot Futures
Mean 0.730 0.649 0.000 0.000
Std. errors 0.221 0.210 0.050 0.040
Skewness -0.010 0.135 0.047 -0.283
Kurtosis 1.831 1.625 6.039 4.288
ADF 0.047* 0.297 0.001* 0.001*
PP 0.099* 0.306 0.001* 0.001*
KPSS 0.010 0.010 0.100* 0.100*

Perron
-1.148 -1.229 / /
-3.8 -3.8 / /

Q(6) 0.001 0.001 0.001 0.681
Q2(6) 0.001 0.001 0.001 0.001

Note: This table reports descriptive statistics and the p-value
of the unit root tests applied, i.e. Augmented Dickey-Fuller
(1981)’s test (ADF), Phillips and Perron (1988)’s test (PP)
and Kwiatkowski et al. (1992)’s test (KPSS). The Perron’s
line refers to the Perron(1990)’s test with the test’s statistic
and the critical value at a 5% significance level in the first and
second line, respectively. The critical value comes from Perron
and Vogelsang (1992). The null hypothesis of unit root with
break is rejected if the test statistics is greater than the critical
value. The star mentions the stationarity of the variable. Q(6)
and Q2(6) are the p-value of the Ljung-Box (1978)’s test and
ARCH test (Engle, 1982) for 6th order autocorrelation.

We apply the Johansen (1988)’s test to check the existence of a long-term re-
lationship with unit cointegrating vector and estimate the conditional mean with
a Markov switching Vector Error Correction model (Ms-VECM) within a bivariate
framework. The inclusion of a multivariate generalized autoregressive conditional
heteroscedasticy error structure allows us to compute the dynamic hedge ratio. By
including a long-term equilibrium, we eliminate a bias in the hedge ratio estimation
mentioned by Kroner and Sultan (1993) and Ghosh (1993). In addition, the non-
linear specification avoids estimation bias due to the existence of multiple regimes
in the mean (Sarno and Valente, 2000) and variance (Lamoureux and Lastrapes,
1990) equations. Finally, the dynamic hedge ratio computed with this specification
outperforms OLS hedge ratio in many energy markets (Alizadeh et al., 2008).

However, the Johansen (1988)’s cointegration tests requires assumptions regard-
ing the short-run dynamic whose is a linear process. By using Johansen (1988)’s test
and estimation procedure with a non-linear short-run specification, we risk obtaining
bias on both cointegration test results and long-term estimations leading to bias on
the short-run and conditional variance estimations. Therefore, we propose to use the
Nielsen (2010)’s nonparametric variance ratio testing approach. This methodology
does not require assumptions on the short-run specification.3 The nonparametric

3For more details on the testing procedure, see Nielsen (2010).
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variance ratio trace statistic is defined by

Λn,r(d1) = T 2d1

N−r∑

j=1

λj (6)

where λj , j=1,...,N, are the eigenvalues, listed by increasing order, of the observed
(N ×T ) time series matrix, r is the cointegration rank tested and d1 is a summation
parameter fixed to 0.1.4 The eigenvalues of the price series matrix is given by the
solutions of

|λBT − AT | = 0 (7)

with

AT =
T∑

t=1

ZtZ
′
t

BT =
T∑

t=1

Z̃tZ̃
′
t

(8)

where Z̃ is the fractional difference of Z truncated by d1. Z is our time series
matrix after demeaning. The null hypothesis is the presence of r − 1 cointegration
relationships. A test statistic greater than the critical value leads to the reject of the
null hypothesis in favor of the alternative, i.e. the existence of r cointegration rela-
tionships. In addition, the estimated cointegration coefficients are provided by the
eigenvectors associated with eigenvalues and converge to their real values. There-
fore, by using both Johansen (1988) and Nielsen (2010)’s cointegration approach, we
can analyze the effect of the long-term estimation bias on the hedge ratio efficiency.

The Ms-VECM with GJR-MGarch5 error structure can be expressed by

ΔXt = c + ΓstΔXt−1 + ΠstXt−1 + εt,st

εt,st =

(
εs,t,st

εf,t,st

)

|Ωt−1 v IN(0, Ht,st)
(9)

where ΔXt = (Δst, Δft)′ (resp. Xt−1 = (st−1, ft−1)′) is the vector of log-returns
(resp. log-price) and c is a vector of constant. Γi,st et Πst are coefficient matrices
related on short- and long-term dynamics, respectively. These 2×2 matrices depend
on the regime st, st = 1, 2. εt,st is a regime dependant Gaussian white noise vector.
With our multivariate Garch error structure, the error covariance matrix, Ht,st, is
time- and regime-dependant.

As mentioned by Alizadeh et al. (2008), two steps are necessary to estimate this
model. First, we check the existence of a cointegrating relationship between spot

4As mentioned by Nielsen (2010), the choice of d1 = 0.1 maximizes the power of the test.
5We estimate a wide range of models but detail only the best model.
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and futures prices. Considering a linear process, we apply the Johansen (1988)’s
test. The λmax and λtrace statistics allow us to check the rank of the matrix Π. Un-
der the null hypothesis, this rank is null and there is no cointegrating relationship.
Under the alternative hypothesis, there is at least one cointegrating relationship.6

If the rank of the long-term adjustment is non null, Π can be decomposed such as
Π = αβ′. The vectors α and β are (2 × 1) coefficient vectors referring to the error
correction coefficients, i.e. characterizing the adjustment process to the long-term
equilibrium, and the long-term coefficients, describing the long-term equilibrium,
respectively. In addition, we apply the likelihood ratio test from Johansen (1995) to
check the existence of unitary long-term coefficients between spot and futures prices.
The non reject of the null hypothesis of unit coefficient will approve the Garbade
and Silber (1983)’s model against that proposed by Figuerola-Ferretti and Gonzalo
(2010).

Second, we introduce regime shifts depending on an unobserved state variable
st. This one can takes two values, st = 1, 2, corresponding to two different regimes.
This variable follows a first order Markov process with the transition probability
matrix,

P =

(
P11 P21

P12 P22

)

=

(
1 − P12 P21

P12 1 − P21

)

(10)

where P12 (resp. P21) is the probability that the system shifts from the state 1 (resp.
2) to the state 2 (resp. 1). P11 and P22 are the probabilities that the system stays
in the past regime, i.e. 1 and 2, respectively. We have obviously P11 + P12 = 1 and
P21 + P22 = 1. All the coefficients depend on the regime st except the long-term
coefficients, β. Indeed, variables having a nonlinear cointegrating relationship do
not admit an error correction model (Gonzalo and Pitarakis, 2006). In presence of
a cointegrating relationship, the Πst matrix is decomposed as Πst = αstβ

′.

The conditional covariance matrix of error terms, Ht,st, is regime dependant,
time-varying and follows a multivariate Garch specification with Baba et al. (1987)
framework, i.e. BEKK, as

Ht,st = C ′
stCst + A′

stεt−1ε
′
t−1Ast + B′

stHt−1Bst + D′
stηt−1η

′
t−1Dst (11)

with εt−1 and Ht−1 being the vector of mean equation residuals and the global co-
variance matrix for the past period, respectively. ηt−1 is negative past shocks, i.e.
ηt−1 = min(εt−1, 0). Cst is a 2×2 lower triangular matrix containing regime depend
coefficients. Ast, Bst and Dst are 2 × 2 diagonal matrices of coefficients measuring
the past shock effects on the conditional covariance matrix, their persistence and the
additional effect of a past negative shock, respectively. However, the conditional co-
variance matrix depends on the sequence of all previous regimes through Ht−1. With
this path dependence problem, the estimation by the maximum likelihood method

6Note that only one cointegrating relationship can exist between two series.
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is numerically infeasible. To overcome this problem, we follows the formulations of
Gray (1996) and Lee and Yoder (2007a) concerning the conditional variances, hss

and hff , and the conditional covariance, hsf , respectively, as

hss,t = π1,t(r
2
s,1,t+hss,1,t)+(1−π1,t)(r

2
s,2,t+hss,2,t)− [π1,trs,1,t+(1−π1,t)rs,2,t]

2 (12)

hff,t = π1,t(r
2
f,1,t+hff,1,t)+(1−π1,t)(r

2
f,2,t+hff,2,t)−[π1,trf,1,t+(1−π1,t)rf,2,t]

2 (13)

hsf,t = π1,t[rs,1,trf,1,t + hsf,1,t] + (1 − π1,t)[rs,2,trf,2,t + hsf,2,t] (14)

−[π1,trs,1,t + (1 − π1,t)rs,2,t][π1,trf,1,t + (1 − π1,t)rf,2,t]

In equations 12, 13 and 14, πst,t is the probability to be in the state st at the time
t. hss,st,t (resp. hff,st,t) is the regime dependant variance concerning the spot (resp.
futures) price at the time t and is contained into Hst,t. Similarly, hsf,st,t is the state
dependant covariance at the time t and is an element of the same matrix. rs,st,t (resp.
rf,st,t) is the regime dependant conditional mean of the spot (resp. futures) price
equation at the time t. These latter are calculated from the following equations.

εs,t = Δst − [π1,trs,1,t + (1 − π1,t)rs,2,t] (15)

εf,t = Δft − [π1,trf,1,t + (1 − π1,t)rf,2,t] (16)

This Ms-VEC model is estimate by maximisation of the likelihood function. Each
state dependant error following a normal distribution with zero mean and Hst,t

covariance matrix, the global density function is a mixture of these distributions
weighted by the probability to be in each regime:

f(Xt, θ) =
π1,t

2π
|Ht,1|

− 1
2 exp(−

1
2
ε′t,1H

−1
t,1 εt,1) (17)

+
π2,t

2π
|Ht,2|

− 1
2 exp(−

1
2
ε′t,2H

−1
t,2 εt,2)

L(θ) =
T∑

t=1

logf(Xt, θ) (18)

with θ, the parameter vector. The log-likelihood function, expressed in the equation
18, is maximized by the Expectation-Maximisation algorithm proposed by Dempser
et al. (1977) under constraints as π1,t + π2,t = 1, π1,t > 0 and π2,t 6 1.

With our specification, we can compute the dynamic hedge ratio as

δt|Ωt−1 =
hsf,t−1

hff,t−1
(19)
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where hsf,t−1 et hff,t−1 are defined in the equations (14) and (13), respectively.

In order to analyze hedging strategies performance of each specification7, we
compute hedged portfolios each week and their returns variance over the samples
chosen as

V AR(Δst − δtΔft) (20)

In addition, as in Kroner and Sultan (1993) or Alizadeh et al. (2008) among others,
we compute the hedger’s utility function as

Et−1U(Δst − δtΔft) = Et−1(Δst − δtΔft) − k × V ARt−1(Δst − δtΔft) (21)

where k is the risk aversion degree. This utility function represents economic benefits
from the hedging strategy. Another way to consider this benefit is the value-at-risk
(VaR) exposure and is computed as

V aR = W0[E(Δst+1 − δt+1Δft+1) + Zα

√
V AR(Δst+1 − δt+1Δft+1)] (22)

where W0 is the initial value of the portfolio and Zα is the normal distribution quan-
tile.

4 Ethanol market overview and efficiency hypothesis

Ethanol policy is a story with many chapters in the past 40 years in the U.S.
ethanol inclusion in U.S. gasoline blends began in 1908 when the Model-T Ford could
be customized to run off of gasoline or alcohol. It was not until the late seventies,
however, that meaningful inclusion of ethanol came about. The first government
involvement for ethanol was the Energy Tax Act of 1978 (an exemption of tax for
adding ethanol in the gasoline blend) on the wake of geopolitical concerns in the oil
market. The Surface Transportation Assistance Act of 1982 and the Tax Reform
Act of 1984 gave an impetus of ethanol inclusion despite the decrease of the tax
exemption during the 1992-2000 period with the Omnibus Budget Recollection Act.
The Renewable Fuel Standard (RFS) program, created by the Energy Policy Act of
2005 and expended by the Energy Independence and Security Act of 2007, has led to
the expansion of the U.S. ethanol market. The ethanol production and consumption
have multiplied by four between 2005 and 2016 (Figure 1).

7We estimate 22 specifications including 8 linear and 14 non linear models. Specifications vary
about inclusion, or not, of error correction and autoregressive terms in mean equation, asymmetry
in variance equation, as well as parameter allowed to switch. In addition, we use an OLS model
and a naive model with an unit hedging ratio.
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Since 2009 the U.S. became a net exporter in the ethanol market. According to
the U.S. Census Bureau, Department of Commerce, and Department of Agriculture,
the U.S. exported 836 million gallon of ethanol in 2015 (5.7% of total U.S. ethanol
production) and imported 93 million gallons of fuel ethanol (less than 1% of U.S.
ethanol consumption). Canada (30% of the U.S. exports), Brazil (14%), Philippines
(9%) China (8%) and India (6%) are the top destinations of U.S. ethanol in 2015.
Brazil remains also the main suppliers for the U.S. with 73% of the imported ethanol
volume in 2015. This export-import structure within the ethanol market with Brazil
can be easily explain by the Renewable Fuel Standard (RFS) and California Low
Carbon Fuel Standard (LCFS) targets put in place for the reduction of the GHG
that impose more stringent requirements. As mentioned by the Energy Information
Administration8 life cycle analysis (LCA) studies demonstrates that ethanol from
sugarcane has a better scoring in terms of GHG emissions that products based on
corn feedstock. It contributes to substitute corn-ethanol production from the coun-
tryside to import sugarcane-ethanol from Brazil. The ethanol market structure is
already driven by the inclusion policy of the different countries, the energy prices and
more especially by the evolution of the crude oil prices and by the regulatory frame-
work. But recent changes prove that production process (ethanol is derived from
different agricultural products) could also impact the international market structure
and the ethanol price dynamics. The ethanol prices registered up and down since
2008 (Figure 2) and the range of prices has extended from 1.47$ per gallon to more
than 4.00$ per gallon following the volatility observed during this period in the en-
ergy and agricultural prices.

Figure 1: Monthly U.S. ethanol production and consumption

Futures contracts on corn based ethanol were launched on floor based trading
on March, 23th 2005 on the CBOT and in 2006 the exchange launched the ethanol
contract on electronic platform whose contributes to increase the liquidity within
the market. In 2007 options contracts were also launch on the market. The volume

8https://www.eia.gov/todayinenergy/detail.php?id=25312
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of contract reached for the first time 1 000 contracts in July 2006 and the volume of
contract really took off after 2009 with the sharp increase in spot prices. During the
previous decades and especially in the initial phase of construction of the ethanol
futures market, the main objective was to attract and concentrate the liquidity
required for commercial traders to achieve hedging activities. Nevertheless, the rise
in transaction volumes has been accompanied by a concentration of traders’ liquidity
on the shortest maturity contracts exchanged in the commodity markets. This factor
has been observed and studied in the past (Lautier, 2005), and for the WTI market in
the U.S. (Hache and Lantz, 2013). For ethanol futures prices, we observed between
2008 and 2016 a decrease in transaction volumes as contract terms grew longer
(figure 3), and a virtual absence of liquidity for long term contracts (compared to
short term maturity). In fact, the inadequate information available at any given
moment t on contracts whose maturity period is greater than one year does not
give traders the incentives to trade in the market. In consequence, the liquidity for
distant contracts a maturity greater than 5 months decreases sharply. Moreover the
maturity greater than 2 months registered a sharp decline in transaction volumes
after 2012.

Figure 2: U.S. Ethanol spot prices

On one hand, by studying available data from 2008 to 2016, we observed a marked
rise in transaction volumes for each maturity. Measured in batches of 29,000 Gal-
lons (a standard financial contract for ethanol on the CBOT), these transactions
have risen, for two-month term contracts, from around 78,864 in 2008 to 404,133
in 2016, i.e. multiplied by a factor of 5 (Figure 3). On other hand, the share of
non-commercial players increased from around 15% before 2008, to over 35% on av-
erage since 2014 (Figure 4). However both the increase in the volume of transactions
on financial trading floors and the increase of the share of non-commercial players
should nevertheless be kept in perspective. As mentioned previously, during the
previous three decades and especially in the initial phase of construction of the com-
modities markets, the main objective of the different derivatives marketplaces was
to attract and concentrate the liquidity required for commercial traders to achieve

12



hedging activities. In October 1974, the NYMEX launched the first energy con-
tracts for industrial fuel oil. Simon (1984) explains the failure of this first attempt
by the under-development of the financial markets and because of the very specific
contract specifications (the delivery point of the futures contracts was Rotterdam
and was not appealing to American commercial players). A contract for heating oil
in the NYMEX was also launched in 1978 and was abandoned because of inadequate
liquidity’s volume. During the 1980s in the context of deregulation put in place by
the Reagan administration, the NYMEX decided a simultaneous launch of energy
contracts: gasoline (1981), crude oil (1983) and heating oil (1990). In Europe the
International Petroleum Exchange (IPE) launched its first fuel oil contract in 1981.
Since then financial markets registered both increase in term of transactions vol-
ume and also an increasing share of non-commercial players in the Exchange. In
the petroleum sector competition between the two main Exchanges i.e. the Nymex
in New York and the Intercontinental exchange (ICE) in London led to a strong
deregulation process. In the U.S. for example the introduction at the end of De-
cember 2000 of the law modernising commodities markets, the Commodity Futures
Modernization Act (CFMA), triggered market instability in the crude oil market for
example (Medlock and Jaffe, 2009; Hache and Lantz, 2013).

Furthermore, the transactions’ volume figures must be handled with care, for
at least two reasons. The strategy of non-commercial players is partly based on
managing price differentials over a certain period of time (calendar spread), between
different commodities or by-products (intra or inter market spread), these activities
create a high degree of fluidity for these contracts. It enables the commercial player
to be able to achieve a physical arbitrage on time and enables also many non-
commercial players to close their positions before the expiration of the contract.

Figure 3: Open interest by contracts maturity

In order to analyse the ability of the theories of Garbade and Silber (1983)
and Figuerola-Ferretti and Gonzalo (2010) to explain the ethanol market, we ap-
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Figure 4: Commercial positions

Figure 5: Position (number of contracts) by actors

ply Johansen(1988)’s cointegration tests and the Likelihood Ratio test to check the
cointegrating relationship and the unit coefficient existence, respectively. Table 2
presents results confirming the presence of a long-term relationship between spot
and futures ethanol prices regardless of the cointegration test used. The Likelihood
Ratio test does not reject the null hypothesis of unit coefficient at a 5% significant
level. Thus, the Garbade and Silber (1983)’s theory is valid to explain the long-term
link between spot and futures prices on the ethanol market. Finally, the long-term
causality tests conclude on a price discovery process from futures to spot prices, at a
10% significant level. With this approach, we can conclude to the market efficiency
about the U.S. ethanol market.

However, the decrease in transaction volume on the ethanol future market for
maturity greater than two months beginning in 2012 and in commercial agents activ-
ities for two-month contract since 2013 (Figure 5) could be explained by the results
presented in Table 3. Indeed, the unit relationship between spot and futures prices
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Table 2: Cointegration and causality test

βsst + ft + β0 = ut

Lags H0
P-value Cointegration vector LR test

λmax test λtrace test (βs 1 β0) H0 : βs=-1 H0 : β0=0
1 r=0 0.001 0.001 (-1.044 1 0.109) 0.078 0.001

- H0 Test stat Critical Value Cointegration vector - -
- r=0 3.78 3.57 (-1.010 1 -) - -

Causality test P-value
Spot to Futures prices 0.867
Futures to Spot prices 0.087

Note: The two first lines present the Johansen (1988)’s test results. The lags column mentions the
number of lag in the VEC Model. Lag length choice is based on Schwartz (1978) Information Criterion.
The two P-value columns refers to the P-value of two tests mentioned. P-value inferior to 0.05 leads
to the null hypothesis reject of zero cointegrating vector against one. Cointegrating vector column
mentions coefficients estimated with β̂s normalised to unity. The LR test checks the existence of an
one-to-one relationship between spot and futures prices. We mention the P-value of the test. The
two next lines present the Nielsen (2010)’s test results with the test statistic and the critical value
associated at a 5% significance level. The chosen specification is with constant and without trend. The
null hypothesis is rejected when the test statistic is superior to the critical value. Note that constant
is not estimated with this procedure. The causality test refers to the Toda and Yamamoto (1995) test
whose null hypothesis is the absence of long-term causality.

Table 3: Long-term coefficient for sub-samples
2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016

λtrace test 0.097 0.329 0.713 0.061 0.018 0.591 0.919 0.114
|βs| 0.973 0.812 0.834 1.229 0.863 3.084 0.726 0.926

H0 : |βs|=1 0.159 0.002 0.027 0.001 0.001 0.012 0.132 0.001
Note: The first line mentions the P-value of the cointegration test. The second line refers to the long-term coefficient for a
two-year estimation. The third line presents the P-value for the unity constraint test, c.f. note table 2.

is rejected at a 5% significant level for all two-year periods since 2009, except in
2013-2014. In addition, situations of long-run backwardation, |βs| < 1, and con-
tango, |βs| > 1, alternate. These changes in market conditions could lead to the exit
of many agents, especially commercial agents, from the market due to difficulties of
making expectations.

5 Empirical results

We estimate the Ms-VEC model with two states applied to both the mean and
the variance equations. These two states refer to low and high volatility regime. Ta-
ble 4 presents results with the Johansen’s cointegration specification.9 In each states,
the futures price adjust to equilibrium more than spot prices ( |αs,st| < |αf,st|). This
result highlights the minor role of futures prices in the discovery process at short-
term. In addition, during high volatility period (st = 1), spot prices do not adjust to
equilibrium. It seems that spot market is disconnected from futures market during
these periods. Note that this adjustment process is faster for each price series during
low volatility regime (st = 2), compare to high volatility state, confirming this view.
Furthermore, this result highlights that the dynamic between the ethanol spot and

9We present results for the best model. Other results are available upon request.
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futures prices is regime dependant confirming the ability of our Markov switching
specification to describe it. Concerning the short-run dynamics (γi,j,st), the spot
prices depend on futures prices changes during normal periods while futures prices
show very little response to spot price changes. During volatile periods, spot prices
seem again partially disconnected from futures market with a higher response to its
changes than to futures prices changes (γ11,1 > γ12,2). Figure 6 presents probability
of being in the high volatility regime.10 Two main periods of high volatility are
in 2008 and 2013-2014. The market disconnection during this two periods could
be explain by the low liquidity in 2008 (Figure 3) and by few positions taken by
commercial agents for the second period (Figure 5).

Turning to the conditional variance equation, the variance process is non-stationary
in the high volatility state with one parameter greater than unity for each price se-
ries (a11,1 and d22,1). Note that spot prices variance have high reaction to (positive)
shocks but no persistence during volatile periods while variance behaviour of spot
and futures prices are close in low volatility periods. These results confirm again
the disconnection of these two markets. Hence, it seems that commercial agents do
not integrate information from ethanol futures markets during instability periods.

Figure 6: Smoothed probabilities of being in high volatility state

10We represent the smoothed probability whose provides the best estimation of the states at each
time using full-sample information . See Krolzig (1997) for further details on its calculation as well
as on others probabilities existing.
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Finally, the probability to switch from high to low variance states (P12) is greater
compare to the probability to switch from low to high variance regimes (P21). This
result indicates a shorter duration for high volatility regimes and is confirmed by the
average expected state duration calculation proposed by Hamilton (1989).11 These
durations are 1.08 and 9.35 weeks for high and low volatility regimes, respectively.
As mentionned above, Figure 6 presents the ”smoothed” probability of being in the
high variance regime. This regime is mainly apparent during the beginning of our
sample, i.e. 2008, as well as during the period from the end of 2013 to mid-2014.
These periods of high volatility could therefore be due to a low liquidity in the fu-
tures market (Figure 3 and 5).

Our different model specifications allow us to compute the dynamic hedge ratios.
We mention also the naive (δ = 1) and OLS hedge ratios of Ederington (1979). We
also provide information about a non-hedged strategy for comparison. In addition,
we compute cross-hedge ratios with gasoline futures market estimating from our dif-
ferent specifications. These latter will allow us to compare direct hedging with the
ethanol futures market and cross-hedging with the gasoline futures market.12 The
gasoline market was usually used to risk hedging before the ethanol futures market
beginning (Franken and Parcell, 2003).

Table 5 provides variance, utility and Value-at-Risk for each specifications and
markets. During the 5/25/2016-12/21/2016 period, the optimal specification is a
VAR-GJR-MGarch. The lack of high volatility state (Figure 6) and cointegration
relationship (Table 3) during this period explain this results. In addition, all cross-
hedging strategy underperform the situation without hedging.

Table 6 mentions results of each hedging strategies for two other panels, i.e.
1/06/2010-8/04/2010 and 1/09/2012-8/01/2012. The Ms-VECM-GJR-MGarch with
Johansen’s cointegration provides the best strategy for both periods. This result con-
firms ability of Markov switching, Johansen’s cointegration, and asymmetric speci-
fications to hedge on the ethanol market. Here, hedgers can decrease of 2,585$ and
1.296$ their average weekly Value-at-Risk with an initial portfolio value of 1,000,000$
compared to the simple OLS specification. These weekly decreases correspond to
18,641$ and 9,346$ annualized decrease that is to say 0.18% and 0.09% of the initial
portfolio value. Furthermore, cross-hedging strategies outperform the non-hedged
situation for each periods with aforementioned and OLS models for panels B and C,
respectively. Finally, the Johansen (1988)’s cointegration procedure outperforms the
nonparametric approach of Nielsen (2010) for 10 strategies against 8 with ethanol
markets as well as with cross-hedging on gasoline futures market. This result could
be due at several.

11The average expected duration of state i can be calculated by (Pij)
−1.

12New York Harbor Reformulated RBOB Regular Gasoline.
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Table 5: In-sample hedging simulation
Ethanol Spot and Futures Ethanol Spot and Essence Futures

Variance Utility VaR Variance Utility VaR

Panel A

No Hedged 12.818 -5.1271 59,073 12.818 -5.1271 59,073
Naive 5.6496 -2.2599 39,219 36.667 -14.667 99,912
OLS 6.0533 -2.4213 40,596 18.164 -7.2658 70,322
MGarch 5.6404 -2.2561 39,187 18.957 -7.5829 71,841
GJR-MGarch 5.7136 -2.2854 39,440 18.235 -7.2938 70,458
VAR-MGarch 5.5787 -2.2315 38,972 18.942 -7.5767 71,811
VAR-GJR-MGarch 5.5677 -2.2272 38,934 18.178 -7.2710 70,348
VECMJ -MGarch 5.5922 -2.2369 39,019 18.922 -7.5687 71,774
VECMJ -GJR-MGarch 5.6052 -2.2421 39,065 18.249 -7.2995 70,486
VECMN -MGarch 6.1329 -2.4531 40,862 18.910 -7.5641 71,752
VECMN -GJR-MGarch 5.6109 -2.2444 39,084 18.238 -7.2953 70,465
Ms-MGarch 5.9618 -2.3847 40,288 18.955 -7.5818 71,836
Ms-GJR-MGarch 6.1917 -2.4767 41,057 18.200 -7.2800 70,391
VAR-Ms-MGarch 5.9420 -2.3768 40,221 18.064 -7.2256 70,128
VAR-Ms-GJR-MGarch 6.4670 -2.5868 41,960 18.407 -7.3628 70,791
VECMJ -Ms-MGarch 5.9376 -2.3750 40,206 18.024 -7.2095 70,050
VECMJ -Ms-GJR-MGarch 6.5960 -2.6384 42,377 18.437 -7.3748 70,848
VECMN -Ms-MGarch 5.9709 -2.3884 40,319 18.217 -7.2868 70,424
VECMN -Ms-GJR-MGarch 6.6559 -2.6623 42,568 18.178 -7.2712 70,349
Ms-VAR-MGarch 5.6600 -2.2640 39,255 18.101 -7.2405 70,200
Ms-VAR-GJR-MGarch 5.7750 -2.3100 39,651 18.094 -7.2377 70,187
Ms-VECMJ -MGarch 5.8284 -2.3314 39,834 18.181 -7.2726 70,355
Ms-VECMJ -GJR-MGarch 7.3905 -2.9562 44,856 16.211 -6.4842 66,433
Ms-VECMN -MGarch 6.4706 -2.5882 41.972 18.217 -7.2868 70,424
Ms-VECMN -GJR-MGarch 6.4690 -2.5876 41,967 18.292 -7.3170 70,570

Note: Panel A refers to 5/25/16-12/21/16. Variance and Utility are presented in 10−4 and 10−3, respectively. VaR
is in U.S. Dollars for an initial investment of 1 million dollars and k = 4. J and N refer to Johansen (1988) and
Nielsen (2010)’s cointegration estimation, respectively.
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Table 6: In-sample hedging simulation with panel B and C
Ethanol Spot and Futures Ethanol Spot and Essence Futures

Variance Utility VaR Variance Utility VaR

Panel B

No Hedged 9.7736 -3.9095 51,584 9.7736 -3.9095 51,584
Naive 5.7974 -2.3189 39,728 17.870 -7.1481 69,751
OLS 5.3950 -2.1580 38,325 7.7517 -3.1007 45,939
MGarch 5.6913 -2.2765 39,363 8.0369 -3.2148 46,777
GJR-MGarch 5.6056 -2.2422 39,066 7.9168 -3.1667 46,426
VAR-MGarch 5.6121 -2.2449 39,088 8.0720 -3.2288 46,879
VAR-GJR-MGarch 5.6330 -2.2532 39,161 7.9824 -3.1930 46,618
VECMJ -MGarch 5.6170 -2.2468 39,105 8.0326 -3.2130 46,764
VECMJ -GJR-MGarch 5.6428 -2.2571 39,195 8.0642 -3.2257 46,856
VECMN -MGarch 5.7126 -2.2851 39,437 8.0372 -3.2149 46,777
VECMN -GJR-MGarch 5.6445 -2.2578 39,201 8.0687 -3.2275 46,869
Ms-MGarch 5.4167 -2.1667 38,402 8.0324 -3,2130 46,763
Ms-GJR-MGarch 5.3329 -2.1331 38,104 7.9821 -3.1928 46,617
VAR-Ms-MGarch 5.4635 -2.1854 38,567 7.9027 -3.1611 46,384
VAR-Ms-GJR-MGarch 5.2726 -2.1091 37,888 7.9991 -3.1996 46,666
VECMJ -Ms-MGarch 5.4717 -2.1887 38,596 7.8041 -3.1216 46,094
VECMJ -Ms-GJR-MGarch 5.2199 -2.0880 37,698 8.0956 -3.2383 46,947
VECMN -Ms-MGarch 5.4588 -2.1835 38,551 7.7840 -3.1136 46,035
VECMN -Ms-GJR-MGarch 5.2132 -2.0853 37,673 8.1095 -3.2438 46,987
Ms-VAR-MGarch 5.3271 -2.1308 38,083 7.8016 -3.1207 46,087
Ms-VAR-GJR-MGarch 5.5619 -2.2247 38,913 7.7725 -3.1090 46,001
Ms-VECMJ -MGarch 5.6938 -2.2775 39,372 7.9081 -3.1633 46,400
Ms-VECMJ -GJR-MGarch 4.6918 -1.8767 35,740 7.9638 -3.1855 46.563
Ms-VECMN -MGarch 5.2964 -2.1186 37,973 7.7726 -3.1091 46,001
Ms-VECMN -GJR-MGarch 5.3765 -2.1506 38,259 7.7695 -3.1078 45,992

Panel C

No Hedged 10.950 -4.3801 54,600 10.950 -4.3801 54,600
Naive 3.1333 -1.2533 29,207 14.189 -5.6755 62,152
OLS 2.8496 -1.1399 27,853 11.110 -4.4439 54,996
MGarch 3.5199 -1.4080 30,956 10.882 -4.3529 54,431
GJR-MGarch 3.4138 -1.3655 30,486 11.016 -4.4063 54,763
VAR-MGarch 3.3610 -1.3444 30,249 11.125 -4.4500 55,034
VAR-GJR-MGarch 3.3093 -1.3237 30,016 11.094 -4.4375 54,957
VECMJ -MGarch 3.2879 -1.3152 29,919 10.963 -4.3853 54,633
VECMJ -GJR-MGarch 3.3420 -1.3368 30,164 10.920 -4.3681 54,525
VECMN -MGarch 2.7996 -1.1198 27,608 10.948 -4.3791 54,594
VECMN -GJR-MGarch 3.3355 -1.3342 20,135 10.917 -4.3669 54,518
Ms-MGarch 2.9370 -1.1748 28,277 10.869 -4.3475 54,397
Ms-GJR-MGarch 2.8212 -1.1285 27,714 11.092 -4.4366 54,952
VAR-Ms-MGarch 3.1885 -1.2754 29,463 10.866 -4.3462 54,389
VAR-Ms-GJR-MGarch 2.7448 -1.0978 27,335 10.827 -4.3308 54,292
VECMJ -Ms-MGarch 3.1765 -1.2706 29,408 10.755 -4.3020 54,111
VECMJ -Ms-GJR-MGarch 2.6695 -1.0678 26,959 10.959 -4.3836 54,622
VECMN -Ms-MGarch 3.1552 -1.2621 29,309 10.831 -4.3325 54,303
VECMN -Ms-GJR-MGarch 2.6451 -1.0581 26,835 10.942 -4.3768 54,580
Ms-VAR-MGarch 3.0836 -1.2334 28,974 11.004 -4.4016 54,734
Ms-VAR-GJR-MGarch 2.9279 -1.1712 28,233 10.983 -4.3931 54,681
Ms-VECMJ -MGarch 2.7052 -1.0821 27,138 11.086 -4.4343 54,937
Ms-VECMJ -GJR-MGarch 2.5905 -1.0362 26,557 10.548 -4.2194 53,589
Ms-VECMN -MGarch 2.8455 -1.1382 27,833 10.806 -4.3225 54,240
Ms-VECMN -GJR-MGarch 2.8925 -1.1570 28,062 10.737 -4.2952 54,068

Note: Panel B and Panel C refer to 1/06/10-8/04/10 and 1/09/12-8/01/12, respectively. Variance and Utility are

presented in 10−4 and 10−3, respectively. VaR is in U.S. Dollars for an initial investment of 1 million dollars and
k = 4. J and N refer to Johansen (1988) and Nielsen (2010)’s cointegration estimation, respectively.
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6 Conclusion

In this paper, we analyze ethanol market in two directions. First, we study
the efficiency of the market with cointegration framework. Second, we provide sev-
eral dynamic hedge ratios and we will be able to examine their performance with
in-sample simulations. For this purpose, we use a Markov switching Vector Error
Correction model with an asymmetric Garch error structure. This specification al-
lows us to study the long-term, short-term and variance dynamics across different
volatility regimes.

Our results are five-fold. First, the long-term equilibrium in the ethanol market is
well explained by the Garbade and Silber (1983)’s theory about efficiency in storable
commodity markets, compare to the Figuerola-Ferretti and Gonzalo (2010)’s model.
In addition, the price discovery process from futures to spot prices is found in the
long-term. However, the ethanol market alternates between long-term backwarda-
tion and contango since 2009. Second, ethanol spot market seems disconnected
from the futures market during high volatility period, that is to say mainly in 2008
and 2013-2014. Third, direct hedging strategy outperform always a cross-hedging
strategy with gasoline futures markets. Four, the Markov switching VEC model
with asymmetric MGarch error process linked to Johansen(1988)’s cointegration es-
timation outperforms other specifications for two thirds of periods analysed. Five,
although the previous mentioned cointegration procedure provides the best specifi-
cation, the Nielsen (2010)’s nonparametric tools gives good results for many model
specifications.

However, the few liquidity on the ethanol futures market, especially for longer
maturity contract, could make more feasible a cross-hedging strategy compare to
direct hedging. Research on others commodity futures market for a better cross-
hedging strategy could provide best results. Crude oil or corn futures markets could
provides good alternatives for cross-hedging as well as raw sugar market.

21



References

• Alizadeh, A.H., Nomikos, N.K., Pouliasis, P.K., 2008, ”A Markov Regime
Switching Approach for Hedging Energy Commodities”, Journal of Bank-
ing and Finance, Vol. 32, Is. 9, pp. 1970-1983.

• Baba, Y., Engle, R., Kraft, D., Kroner, K., 1987, ”Multivariate Simultane-
ous Generalized ARCH”, University of California, San Diego, unpublished
manuscript.

• Baillie, R.T., Myers, R.J., 1991, ”Bivariate Garch Estimation of the Op-
timal Commodity Futures Hedge”, Journal of Applied Econometrics, Vol.
6, Is. 2, pp. 109-124.

• Bera, A., Jarque, C., 1980, ”Efficient Tests for Normality, Heteroscedas-
ticity, and Serial Dependance of Regression Residuals”, Economic Letters,
Vol. 6, Is. 3, pp. 255-259.

• Brennan, M., 1958, ”The Supply of Storage”, American Economic Review,
Vol. 48, Is. 1, pp. 50-72.

• Brooks, C., Henry, O.T., Persand, G., 2002, ”The Effect of Asymmetries
on the Optimal Hedge Ratios”, Journal of Business, Vol.75, Is. 2, pp.
333-352.

• Cecchetti, S.G., Cumby, R.E., Figlewski, S., 1988, ”Estimation of the
Optimal Futures Hedge”, The Review of Economics and Statistics, Vol.
70, Is. 4, pp. 623-630.

• Chou, W., Denis, K., Lee, C., 1996, ”Hedging with the Nikkei Index Fu-
tures: The Conventional versus the Error Correction Model”, The Quar-
terly Review of Economics and Finance, Vol. 36, Is. 4, pp. 495-505.

• Dahlgran, R.A., 2009, ”Inventory and Transformation Hedging Effective-
ness in Corn Crushing”, Journal of Agricultural and Resource Economics,
Vol. 34, Is. 1, pp. 154-171.

• Dempster, A.P., Laird, N.M., Rubin, D.B., 1977, ”Maximum Likehood
from Incomplete Data via the EM Algorithm”, Journal of the Royal Sta-
tistical Society. Series B (Methodological), Vol. 39, Is. 1, pp. 1-38.

• Dickey, D.A., Fuller, W.A., 1981, ”Likelihood Ratio Statistics for Autore-
gressive Time Series with a Unit Root”, Econometrica, Vol. 49, Is. 4, pp.
1057-1072.

• Ederington, L.H., 1979, ”The Hedging Performance of the New Futures
Markets”, The Journal of Finance, Vol. 34, Is. 1, pp. 157-170.

• Engle, R.F., 1982, ”Autoregressive Conditional Heteroscedasticity with
Estimates of the Variance of the United Kingdom Inflation”, Economet-
rica, 50, Is. 4, pp. 987-1008.

• Engle, R.F., Kroner, K., 1995, ”Multivariate Simultaneous Generalized
ARCH”, Econometric Theory, Vol. 11, Is. 1, pp. 122-150.

22



• Figuerola-Ferretti, I., Gonzalo, J., 2010, ”Modelling and Measuring Price
Discovery in Commodity Markets”, Journal of Econometrics, Vol. 158, Is.
1, pp. 95-107.

• Franken, J.R.V., Parcell, J.L., 2003, ”Cash Ethanol Cross-Hedging Op-
portunities”, Journal of Agricultural and Applied Economics, Vol. 35, Is.
3, pp. 510-516.

• Garbade, K.D., Silber, W.L., 1983, ”Price Movements and Price Discovery
in Futures and Cash Markets”, Review of Economics and Statistics, Vol.
65, Is. 2, pp. 289-297

• Garcia, P., Roh, J., Leuthold, M., ”Simultaneously Determined, Time-
Varying Hedge Ratios in the Soybean Complex”, Applied Economics, Vol.
27, Is. 12, pp. 1127-1134.

• Ghosh, A., 1993, ”Cointegration and Error Correction Models: Intertem-
poral Causality between Index and Futures Prices”, Journal of Futures
Markets, Vol. 7, Is. 1, pp. 19-38.

• Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993, ”On the Relation
between the Expected Value and the Volatility of the Nominal Excess
Return on Stocks”, Journal of Finance, Vol. 48, Is. 5, pp. 1779-1801.

• Gonzalo, J., Pitarakis, J.Y., 2006, ”Threshold Effects in Multivariate Er-
ror Correction Models” in: Mills, T. and Patterson, K., Eds., Palgrave
Handbook of Econometrics: Econometric Theory, Volume 1, New York:
Palgrave MacMillan, pp. 578-609.

• Gray, S.F., 1996, ”Modelling the Conditional Distribution of Interest Rates
as Regime Switching Process”, Journal of Financial Economics, Vol. 42,
Is. 1, pp. 27-62.

• Hache, E., Lantz, F., 2013, ”Speculative Trading and Oil Price Dynamic:
A Study of the WTI Market”, Energy Economics, Vol. 36, pp.334-340.

• Hamilton, J.D., 1989, ”A new Approach to the Economic Analysis of Non-
Stationary Time Series and Business Cycle”, Econometrica, Vol. 57, Is. 2,
pp. 357-384.

• Hanly, J., 2017, ”Managing Energy Price Risk using Futures Contracts: A
Comparative Analysis”, The Energy Journal, Vol. 38, Is. 2, pp. 93-112.

• Heaney, R., 2002, ”Approximation of Convenience Yield for Commodity
Futures Markets”, Journal of Futures Markets, Vol. 22, Is. 10, pp. 1005-
1017.

• Johansen, S., 1988, ”Statistical Analysis of Cointegrating Vectors”, Jour-
nal of Economic Dynamics and Control, Vol. 12, Is. 2-3, pp. 231-254.

• Johansen, S., 1995, ”Likelihood-Based Inference in Cointegrated Vector
Autoregressive Models”, Oxford University Press, Oxford.

23



• Kavussanos, M., Nomikos, N.K., 2000, ”Hedging in the Freight Futures
Markets”, Journal of Derivatives, Vol. 8, Is. 1, pp. 41-58.

• Kaldor, N., 1939, ”Speculation and Economic Stability”, The Review of
Economic Studies, Vol. 7, Is. 1, pp. 1-27.

• Krolzig, H.M., 1997, Markov-Switching Vector Autoregressions: Modelling,
Statistical Inference, and Application to Business Cycle Analysis , Springer-
Verlag Berlin Heidelberg.

• Krolzig, H.M., 1999, ”Statistical Analysis of Cointegrated VAR Processes
with Markovian Regime Shifts”, Department of Economics, University of
Oxford, unpublished manuscript.

• Kroner, K., Sultan, J., 1993, ”Time-Varying Distributions and Dynamic
Hedging with Foreign Currency Futures”, Journal of Financial and Quan-
titative Analysis, Vol. 28, Is. 4, pp. 535-551.

• Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y., 1992, ”Test-
ing the Null Hypothesis of Stationarity against the Alternative of a Unit
Root”, Journal of Econometrics, Vol. 54, pp. 159-178.

• Lautier, D., 2005, ”Term Structure Models of Commodity Prices: a Re-
view”. Journal of Alternernative Investments, Vol. 8, Is. 1, pp. 42-64.

• Lamoureux, C.G., Lastrapes, W.D., 1990, ”Persistence in Variance, Struc-
tural Change, and the GARCH Model”, Journal of Business and Economic
Statistics, Vol. 8, Is. 2, pp. 225-234.

• Lee, H., 2010, ”Regime Switching Correlation Hedging”, Journal of Bank-
ing and Finance, Vol. 34, Is. 11, pp. 2728-2741.

• Lee, H., Yoder, J.K., 2007a, ”A Bivariate Markov Regime Switching
GARCH Approach to Estimate Time Varying Minimum Variance Hedge
Ratio”, Applied Economics, Vol. 39, Is. 10, pp. 1253-1265.

• Lee, H., Yoder, J.K., 2007b, ”Optimal Hedging with a Regime-Switching
Time-Varying Correlation GARCH Model”, Journal of Futures Markets,
27, Is. 5, pp. 495-516.

• Lien, D., 1996, ”The Effect of the Cointegration Relationship on Futures
Hedging: A Note”, Journal of Futures Markets, Vol. 16, Is. 7, pp. 773-780.

• Lien, D., Tse, Y.K., 2002, ”Some Recent Developments in Futures Hedg-
ing”, Journal of Economic Surveys, Vol. 16, Is. 3, pp. 357-396.

• Lien, D., Yang, L., 2008, ”Asymmetric Effect of Basis on Dynamic Fu-
tures Hedging: Empirical Evidence from Commodity Markets”, Journal
of banking and Finance, Vol. 32, Is.2, pp. 187-198.

• Ljung, M., Box, G., 1978, ”On a Measure of Lack of Fit in Time Series
Models”, Biometrika, Vol. 65, Is. 2, pp. 297-303.

24



• Medlock, K.B., Jaffe, A.M., 2009. Who is in the Oil Futures Markets and
how has it changed? James A. Baker III, Institute for Public Policy. Rice
University.

• Myers, R.J., Thompson, S.R., 1989, ”Generalized Optimal Hedge Ratio
Estimation”, American Journal of Agricultural Economics, Vol. 71, Is. 4,
pp. 858-868.

• Nielsen, M.Ø., 2010, ”Nonparametric Cointegration Analysis of Fractional
Systems with Unknown Integration Orders”, Journal of Econometrics, Vol.
155, Is. 2, pp. 170-187.

• Perron, P., 1990, ”Testing for a Unit Root in a Time Series with a Changing
Mean”, Journal of Business Economic Statistics, Vol. 8, Is. 2, pp. 153-162.

• Perron, P., Vogelsang, T.J., 1992, ”Testing for a Unit Root in a Time
Series with a Changing Mean: Corrections and Extensions”, Journal of
Business and Economic Statistics, Vol. 10, Is. 4, pp. 467-470.

• Phillips, P.C.B., Perron, P., 1988, ”Testing for a Unit Root in Time Series
Regression”, Biometrika, Vol. 75, Is. 2, pp. 335-346.

• Routledge, B.R., Seppi, D.J., Spatt, C.S., 2000, ”Equilibrium Forward
Curves for Commodities”, The Journal of Finance, Vol. 55, Is. 3, pp.
1297-1337.

• Salvador, E., Arago, V., 2014, ”Measuring Hedging Effectiveness of Index
Futures contracts: Do Dynamic Models outperform Static Models? A
regime-switching approach”, Journal of Futures Markets, Vol. 34, Is. 4,
pp. 374-398.

• Sarno, L., Valente, G., 2000, ”The Cost of Carry Model and Regime Shifts
in Stock Index Futures Markets: An Empirical Investigation”, The Journal
of Futures Markets, Vol. 20, Is. 7, pp. 603-624.

• Schwartz, G., 1978, ”Estimating the Dimension of a Model”, The Annals
of Statistics, Vol. 6, Is. 2, pp. 461-464.
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