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Abstract 

The study applies a new approach-spatial Durbin Model (SDM) to examine the merit-order effect (MOE) 

of wind generation after accounting for both spatial and seasonal effects. Negative and significant direct and 

indirect effects are associated with increases in both types of neighbourhood wind penetration, suggesting 

that the higher wind penetration in node i leads, not only to a reduction in nodal prices in node i, but also to 

those in neighbourhood node j. The stronger MOE is found during peak times and the weakest MOE occurs 

during the night. Our results show that disregarding spatial spill-overs leads to an underestimation of the 

MOE of wind penetration on nodal prices. The ability of spatial regression models to provide quantitative 

estimates of spill-over magnitudes and allowance for statistical testing for the significance of these 

represents the value of the contribution of spatial regression models to the understanding electricity prices. 
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1. Introduction 

The New Zealand Government aims to lift the share of electricity generated from renewable resources from 80% 

to 90% by 2025. Due to the limited expansion of hydro capacity expected in the future, wind power could 

contribute as much as 20% if this target is to be achieved. According to the NZWEA, wind power will continue 

growing and reach to at least 3,500 MW capacity by 2030. Long run marginal cost for wind is decreasing with 

the large, mature and growing wind industry. The amount of wind generation is predictable. The zero cost of 

fuel for wind and the increasing cost for fossil fuel provide wind with a comparative advantage in the long run 

for the wind power developer. 

New Zealand’s electricity market would face a bigger challenge when integrating intermittent wind into the 

power system than Nord pool electricity market due to NZ’s special geographical feature. The electricity is 

consumed within the country, and there are no electricity imports and exports to and from other nations. Unlike 

the Nordic electricity market, the surplus or shortage of electricity can be exported or imported within the Nord 

pool electricity market (Denmark, Finland, Sweden, Norway, Estonia and Lithuania).  

Understanding the behaviour of nodal prices when adding wind is crucially important for valuation and risk 

management of real assets and financial claims. The non-storability of electricity, the characteristics of demand 

and supply and the structure of the market and the market power of the generators all contribute to the observed 

high volatility of electricity prices (Escribano et al., 2011). Electricity generation in New Zealand is hydro-

dominated, with around 57% of electricity having been generated by hydro during the 2011-2014 period. The 
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average electricity percentage generated from thermal sources was 21%, geothermal 15%, wind 5% and 

cogeneration 3% (ENZ, 2016). New Zealand lacks significant capacity for water storage to provide reliable 

hydro generation. This makes the New Zealand electricity system vulnerable to dry periods. During dry periods, 

HVDC provides the South Island consumers with access to the North Island’s thermal generation capacity. 

During wet periods, the HVDC transfers surplus South Island hydroelectric power northwards to the North 

Island. 

The impact of  wind generation on electricity prices via the MOE has been examined in Germany (Sensfuss et 

al., 2008), Spain (de Miera et al., 2008) and Denmark (Munksgaard & Morthorst, 2008). However, policies in 

these countries directly support renewable energy sources, see Haas et al. (2008). Moreover, both Nicholson et 

al. (2010) and Pöyry (2010) found that the MOE is stronger during the day than in the night. The impact on 

price depends on the generation mix and availability of flexible conventional capacity. Furthermore, the 

majority of countries give priority to renewable energy plants in terms of network access and dispatching. In 

contrast, the electricity market in New Zealand is open and supply technologies can opt to bid in each 30 minute 

trading period. When the market closes, the system operator dispatches supply at least cost. As no subsidies are 

offered in New Zealand for the promotion of renewable resources, this provides an ideal opportunity for 

examining the MOE of wind penetration. 

To the best of our knowledge, to date, no journal articles have been published on MOE in New Zealand. 

Therefore, in addition, there are no studies that have applied spatial models to MOE studies. Spatial models 

have been extensively used in urban and regional science studies, such as, knowledge and innovation (Anselin 

et al., 1997; Boschma, 2005; Carlino et al., 2007), cities and clustering (Duranton, 2007; Ellison et al., 2010), 

and labour and land markets (Faggian and McCann, 2009; Mellander et al., 2011). The issue of local geographic 

spill-overs between nodal price and wind generation is our particular area of interest, especially when studying 

the NZEM, which is characterized by nodal connections and geographic spread. 

Inspired by the first law of geography: “everything is related to everything else, but near things are more related 

than distant things” (Tobler, 1970), we apply a spatial model to examine the MOE of wind penetration. We 

hypothesise that the MOE of wind penetration is not only influenced not by factors at the grid injection point, 

but also by factors at its neighbouring nodes. We also estimate the MOE by season and demand segments.  

Our paper aims to extend the literature by investigating the MOE in general in the New Zealand electricity 

market (NZEM) based on spatial models. We are interested in the evaluation of the extent of the MOE of wind 

penetration hourly, weekly and seasonally. By establishing the geographical location of wind farms we estimate 

the spatial impact of wind generated electricity at neighbouring nodes, again, controlling for competing sources 

of electricity. The findings are expected to provide important evidence for acquiring security of supply 

management to stabilise the balance between wind capacity and conventional capacity, the balance between 
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electricity supply and demand. This innovative approach can be applied to assessing the MOE in any electricity 

system that is influenced by generation or regulatory factors in neighbouring countries.   

The paper is structured in the following way. Section 2 reviews the literature. Section 3 provides the background 

to the NZEM, data and empirical analysis. Sections 4 and 5 describe the methodology and the empirical results. 

Section 6 concludes this paper.  

2. Literature review 

A number of studies have assessed the MOE of wind power on spot prices. The papers reviewed cover a wide 

range of MOE of wind power penetration across countries. Although each of the papers reviewed has adopted 

different assumptions and methods, similar conclusions were drawn. One of the general conclusions pertains to 

reduced spot power price due to increased wind power penetration.  

 

Source: own illustration 

Fig.1. Impact of wind generation on nodal prices in different segments of electricity demand 

Fig. 1 illustrates the supply merit-order curve under two scenarios. When more low-cost wind capacity is added, 

this shifts the merit-order curve to the right and pushes out the most expensive generators. This results in the 

reduction of the wholesale electricity price at a given level of demand. During peak demand, after most of the 

cheaper technologies have been committed, demand is satisfied by relatively more expensive sources of 

electricity. Consequently, the MOE of wind generation is larger in peak demand conditions than in other 

circumstances. In contrast, the MOE is smallest during periods of off-peak demand.  

Morthorst (2007) conducted a structural analysis by decomposing the data on wind power from the West 

Denmark area into five separate categories. 0 – 150 MW equals “No Wind” reference. There are four further 
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categories starting from “Low Wind” through to “Storm”. The last category covers wind power greater than 

1500 MW. The hourly data for wind power production and the corresponding power price were used. Seasonal 

variations were accounted for by choosing four different months during 2004 and 2005. The Author concluded 

that wind power has a “significant” effect (no statistical tests provided) on spot power prices.  It was reported 

that power consumers witnessed a decreased spot power price of approximately 4-6% in 2004 and 12-14% in 

2005. It was not possible to perform a complete analysis on all the relevant influencing factors e.g. data 

pertaining to trade with Germany. 

Following the liberalization of the Danish electricity market in 1999, investment in new wind power installations 

declined in the country. Munksgaard and Morthorst (2008) investigated the impact of the re-designed feed-in 

tariff (FIT) on power price and its impact on the incentives to invest in new wind power capacity. They examined 

the economic impact of the measures on both wind power producers and electricity consumers. A comparison 

of the revenue from wind power production and the cost of production provided evidence as to whether there 

was an incentive to invest in wind power. The researchers concluded that it was not the tariff itself, but a 

combination of problems, e.g. spatial planning, high risk aversion of new wind investors and the more 

favourable support schemes offered in other countries, that were the cause of the recession in new wind power 

installation. By using data from 2000 to 2007, a decreased spot price of 12-14% in West Denmark and 2-5% in 

East Denmark were found during extreme weather scenarios, in which wind power production exceeded 1,500 

MW. The electricity consumers pay a subsidy to wind-power producers, and the subsidy is to some extent 

remunerated by the MOE of low marginal costs of wind power. 

Jónsson, et al. (2010) developed a non-parametric regression model to examine how spot prices in West 

Denmark were affected by wind power forecasts between 2006 and 2007. They found that the ratio between the 

wind generation forecast and the load forecast had the strongest effect on spot prices. An example illustrates 

that when the forecast wind penetration was less than 4% there was little or no effect on spot prices; with a 

forecast exceeding 11%, the spot prices gradually decrease. On average prices had dropped by 17.5% when 

wind power penetration was more than 4%. Wind power had a non-linear effect on prices, thus implying that 

the current market situation could not be scaled directly in order to analyse future circumstances. The impact of 

wind power generation on day-ahead spot pricing was substantial. The large price variation is due to the high 

wind penetration in a relatively small size electricity market. They concluded that 40% of the electricity price 

variation can be allocated to wind power. 

In Germany, grid operators are required by law to buy electricity generated by specified renewable energy 

sources (RES) at a guaranteed FIT. Electricity supply companies must purchase electricity generated by the 

RES in advance; this has the effect of reducing the number of purchases from other sources. Consumers pay for 

the additional cost of the FIT. This arrangement impacts the MOE. Sensfuss, et al. (2008) carried out an analysis 

by using the calibrated agent-based model, PowerACE, which simulated the electricity market prices from 2001 

to 2006. Bid prices were based on variable cost and start-up cost. The model includes fossil fuel (Nuclear, coal, 
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gas, and oil) prices, capacity scarcity, and carbon prices. The MOE varies with the price of fuel. Gas and hard 

coal price has a significant impact on the MOE because gas and coal are the price setting units in Germany. 

Raising the renewable capacity 40% led to a 31% increase in the MOE. A premium that is added to the bid price 

is known as the scarcity mark-up, this increased the volume MOE by about €0.7 billion over the 2005-2006 

period. The researchers found that the volume of MOE was largely dependent on the steepness of merit-order 

curve. In hours of peak demand, the simulated impacts of RES on spot price were found to range from 0 €/MWh 

to 36 €/MWh. In 2006 the reduction of the unweighted average price resulted in 7.8 €/MWh. The price effect 

was claimed to be similar to the impact of wind energy on market prices in Denmark (Morthorst, 2007) in which 

the author claimed that reductions in the order of 12-15% were observed.  

Further, Weigt (2009) analysed the potential of wind energy to replace fossil fuel capacity, in addition to the 

cost savings it would be likely to bring. A static optimisation market model was employed with the objective of 

meeting demand with minimal production cost. Results for small scale generation from solar, biomass and other 

fuel types are not shown in the model. The export and import of electricity was not considered. Wind generation 

was found to have a downward impact on both price and generation cost. The price impact depended on the 

time of day (varying load levels) and was explained in terms of the MOE of the electricity markets. On average, 

there was around a 10 €/ MWh reduction in price after adding wind generation to the sources of power. There 

was a significant impact of increased wind generation on price reduction during peak hours, while there was 

only a small impact during off peak hours. The results were explained by the shape of the merit curve that 

showed a relatively flat supply curve at the start and a steep slope at the peak-load level.  

Moreover, Ketterer (2014) examined the effect of wind generation on the level and the volatility of the electricity 

price in Germany based on a GARCH model and found that intermittent wind power reduces the price level but 

increases its volatility. 

In Spain, de Miera et al. (2008) studied the reduction in the wholesale price of electricity as a result of the 

increase in renewable energy sources (RES-E) generation being fed into the Spanish electricity market grid. The 

results show that wind generation reduced the wholesale electricity price to 7.08 €/ MWh in 2005, 4.75 €/MWh 

in 2006 and 12.44 €/MWh in 2007. They concluded that the reduction in electricity prices stemmed from the 

change in the merit order caused by wind generation. There was an absolutely negative correlation between 

wind electricity promotion (the FIT) and the wholesale market price. The amount of price reduction was greater 

than the increase in cost for the consumers. Therefore, a consumer would benefit from a net reduction in the 

retail electricity price. The short/medium-term reduction in the wholesale price would be offset by the increase 

in the costs of RES-E support. The findings provided the policy implication that there are three objectives of 

RES-E deployment. A reduction in CO2 emissions and more moderate consumer prices can be accomplished 

instantaneously.  
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In Ireland, O’Mahoney and Denny (2011) applied an hourly time series OLS regression model to estimate the 

MOE of wind generation in 2009 in the Irish electricity market. They found an increase of one MW of wind on 

the Irish system reduced price by 0.0099 € per MWh. The total costs to the market would have been 12% higher 

without wind output. 

Except the discussed studies from European countries, in the United States, Woo et al. (2011) applied the 

method of maximum likelihood to study the four Electricity Reliability Council of Texas (ERCOT) Zonal 

market-price. The results showed that a 10% increase in the installed capacity of wind generation reduced the 

price by 2% in the non-Western zones and around 9% in the Western zone, but increased in a price variance of 

less than 1% in the non-Western zones and 5% in the Western zone. They concluded that rising wind generation 

is likely to reduce the spot prices but also to increase spot price variance. 

In Australia, Cutler, et al. (2011) assessed the interaction of regional wind generation, electricity demand and 

spot prices over a two-year period from September 2008 to August 2010 in the South Australian (SA) region. 

With limited interconnection with other regions in the Australian National Electricity Market (NEM), SA’s 

wind energy represents an interesting example in order to study the impact of wind penetration on spot price. 

The researchers found that electricity demand dominates spot price, in comparison with other factors, has the 

greatest influence on spot pricing. Wind power has a significant secondary impact on spot pricing. There is a 

tendency for spot prices to be lower when there is a high level of wind power generation. Uncertain demand 

and various contingencies, as well as generator bidding strategies, were expected to influence price. 

Raising wind into an electricity system tends to reduce spot prices via the MOE. The impact of MOE is greater 

when the system approaches its capacity limits (e.g. during peak load). A consistent conclusion has been found 

in many countries. With the reduction of installation and capital cost of photovoltaic (PV), many countries have 

increased the deployment of PV. Therefore, more attention is focussed on the studies of the MOE of solar (e.g. 

McConnell et al., 2013 in Australia, Cludius et al., 2014 in Germany, Clò et al., 2015 in Italy, Welisch el al., 

2016 in Germany, Spain and Denmark, and Luňáčková el al., 2017 in the Czech Republic). 

In their study of the effect of distributed photovoltaic generation on the Australian electricity market, McConnell 

et al. (2013) built a model based on historic bids in 2009 and 2010 and modelled the installation of distributed 

photovoltaic generation between 1 GW and 5 GW of capacity. They found the value of a 5 GW installation due 

to the MOE was 1. 2 billion, representing over 12% of the total value traded on the Australian pool market. The 

implication of their findings for FIT policies, is that, they could deliver savings to consumers, contrary to 

prevailing criticisms that they are a regressive form of taxation. 

Cludius et al. (2014) used time-series regression analysis on the effect of wind and PV, on the German electricity 

spot price; separately, over the period 2008-2016, they found that the estimated MOE ranged from -0.94 to -

2.27€/MWh for wind and from -0.84 to -1.37€/MWh for PV. The analysis on the redistributive effects of the 
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German Renewable Energy Sources Act (Erneuerbare Energien Gesetz, EEG) suggests that the distributional 

assessments should be taken into account for equity issues when designing and implementing a policy. 

In Italy, Clò et al. (2015) applied a multivariate linear regression model to examine the impact of solar and wind 

generation on national wholesale electricity prices via MOE for the years 2005 to 2013 in the Italian power 

market. They found that by adding additional 1GWh to the hourly average solar and wind production, electricity 

prices would be reduced by 2.3€/MWh and 4.2€/MWh, respectively, and prices’ volatility would be increased. 

Interestingly, the higher monetary savings from solar production, rather than from wind generation, are not 

sufficient to offset the cost of the related supporting schemes; and this results in the reduction of the consumer 

surplus. Estimates of savings from wind production present the opposite results.  

Welisch el al. (2016) re-examined the MOE in Germany, Spain and Denmark by adding the solar power into 

the analysis. Results showed the consistent, negative impact of renewable energy sources (wind or solar 

photovoltaics-PV) on electricity spot market prices in all countries. In addition, the magnitudes of these impacts 

differed over countries. In Spain, a relatively high MOE was visible in the relatively low market value for wind 

and PV in comparison with other European countries. In Denmark, the small average MOE with high market 

value for wind power was found to be due to a more flexible demand-side management that accommodates 

large shares of renewable electricity into the heating system. In Germany, a stable in-feed pattern of renewable 

electricity was assumed to be obtained from a balanced mix of renewables by referring to generation profiles. 

By combining the MOE analysis with the market values of renewables, the study provides strategic insights for 

policy makers to integrate large shares of renewables into different electricity markets.  

Based on the data for the Czech electricity spot market from 2010 to 2015, Luňáčková el al. (2017) examined 

the MOE as the elasticity of electricity spot price with respect to change in supply of electricity from renewable 

sources. The MOE of solar power and other renewable sources (mainly water and wind) were examined 

separately. The researchers found the MOE existed for other renewables, rather than for solar and concluded 

that promoting solar energy, rather than other renewable energy sources, may be suboptimal in the Czech 

Republic. 

Low electricity prices driven by the large share of renewable technologies would reduce the unit revenues of 

the RES technologies (without considering subsidies) more than would the revenues from traditional sources. 

In this regard, Haas et al. (2013) found that increased PV directly reduces the electricity price when solar power 

is available, conversely, conventional power plants tend to increase the market price when RES are scarce. In 

this way, traditional sources would partially cover the loss of revenue in those hours when market price reduces 

due to RES penetration. On the contrary, RES producers cannot take on a similar strategic behaviour; the MOE 

of RES depends on the degree of market competition and on the shape of the merit-order function, in particular, 

the elasticity of supply. 
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The reviewed papers investigate the MOE of wind generation across countries. Each study has found a negative 

impact of wind generation on electricity price, but the extent of MOE varies across countries. This could arise 

from the differences in the models’ assumptions, types of renewable sources, frequency of data, or variations 

across regions and countries. The most important variable for determining the MOE is the marginal cost of 

conventional technology that is being displaced. 

Conclusions from the above studies drawn from the impact of wind power on electricity prices are conditional 

on the RES policies implemented (such as FIT, bearing in mind that not all FIT policies are equal) and the 

institutional structures in place to encouragement development, trading opportunities across countries, rules 

within countries (such as Sweden, where the system operator attempts to equalise prices across spot markets), 

within thermal profiles of country, and their transmission constraints.  

The papers most relevant and important for the purposes of this study are summarised in Table 1. Two 

conclusions are of interest. First, and probably the most obvious, is that the impact on electricity prices is directly 

linked to wind conditions, and time of day (Morthorst, 2007; Weigt, 2009). Second, the impact on electricity 

prices depends on the penetration of wind (threshold effect) in the market (Jónsson, et al., 2010; de Miera et al., 

2008).  

[Table 1 here] 

None of these studies has examined the MOE of wind penetration by using panel data with a spatial model that 

includes the generation mix and electricity demand in the NZEM. This study contributes to the literature by 

examining the direct and spill over MOE after controlling time and space. In New Zealand, wind and solar PV 

do not receive any direct government subsidies. The installed capacity of gird-connected solar power is 34.5 

MW in 2015 (EA, 2016). Compared to the 10 GW total installed electricity capacity, the small portion of solar 

PV plays only a trivial role in nodal pricing. Therefore, we focus on the MOE of wind penetration in a 

competitive market.  

3. Background, Data and Empirical Analysis 

3.1 Background 

Since 2004, the wholesale electricity market has operated a compulsory pool market in which all generated and 

consumed electricity is traded. Bilateral and other hedge arrangements are available, despite functioning as 

separate financial contacts. Each generator offers generation to the Independent System Operator (ISO) in the 

form of offer stacks. Bids (purchaser/demand) and offers (generator/supply) are uploaded into the wholesale 

information and trading system (WITS) by electricity market participants. Transpower, a state owned enterprise, 

owns the National Grid and is the Independent System Operator (ISO). The ISO ranks offers in order of price 
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and selects the lowest-cost combination that satisfies demand. Prices on the spot markets are calculated every 

half hour and vary depending on supply and demand, and location.  

There are 11743 km of high-voltage transmission lines in New Zealand. The transmission grid contains about 

250 nodes over 450 links. Currently, both electricity generation and retail are open markets, but transmission 

and distribution are natural monopolies. Five major generators (Contact, Trustpower, Genesis Energy, Meridian 

Energy and Mighty River Power) operate 179 out of 200 power stations and produce 95% of New Zealand’s 

electricity. Each generator has its own retailing business. With no subsidies for the promotion of renewable 

resources, New Zealand’s deregulated market provides an ideal opportunity for the examination of the MOE of 

wind.  

Annual average electricity demand continues its flat trend with an amount varying between 40,000 GWh and 

42,000 GWh. Total installed electricity capacity in New Zealand is approximately 10GW. In 2015, 

approximately 81% of electricity was generated by renewables (MBIE, 2016). The fraction of power generated 

from wind is growing in New Zealand. In 2015, the combined installed capacity reached 690 MW and electricity 

generated by wind accounted for about 6.4% or 2,333 GWh. Currently, there are 19 wind farms. The majority 

of the existing wind farms are located in the Waikato, the Manawatu, Wellington and Southland.  

3.2. Data 

Data used in this study are taken from the New Zealand Electricity Authority’s Centralised Dataset (CDS) 2012, 

which provides details of actual generation, pricing, and demand data.  The sample is restricted to a balanced 

panel for 2012. There are a number of reasons for the choice of 2012. First, 2012 was a dry year. As a hydro-

dominated electricity system, in a dry year, the opportunity cost of using water is expected to increase; wholesale 

prices are expected to rise and thermal plants are expected to increase generation, this will lead to more price 

spikes in comparison with wet years due to greater uncertainty during periods of drought. We are interested in 

examining the MOE of wind penetration during dry and wet seasons. Second, there was a minimal increase in 

installed capacity over the period of 1993-2003. In 2011, there was a relatively large increase in installed 

capacity, reaching 623 MW; it remained at 623 MW until 2014 when installed capacity increased by 66 MW. 

Third, wind energy accounted for 5% of energy generation in 2012 compared to 4% in 2011. The decrease in 

hydro generation from 58% in 2011 to 53% in 2012 is associated with an increase in thermal generation from 

23% in 2011 to 28% in 2012. Thus, 2012 provides an ideal platform with which to analyse the MOE. 

After excluding nodes that contribute less than 1% of annual demand, we use 11 of the 19 nodes, which is 

simplified version of New Zealand’s 244 node network (Browne et al., 2012). In 2012, more than 90% of the 

total demand was supplied from these nodes. A map of the 11 nodes (blue colour) is depicted in Fig.2. The 

location for these nodes and associated generation plants are reported in Table 2. Tararua, Te Rere Hau and Te 

Apiti wind farms are aggregated into one node, BPE. The Tararua wind farm, with a capacity of 264 MW, is 
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New Zealand’s largest wind farm, both in terms of the number of turbines and output. The HLY node has both 

wind and thermal generation which allows us to analyze the relationship among wind, thermal and prices.  

[Table 2 here] 

 

 

 

 

 

 

 

Wind generation at Nodes BPE, HAY and HLY 

Aggr. node Type Plant Inst. Cap. Typ. output 

Share of supply 
(Typ.out/Total 

production 

42900 GWh/yr) 

   [MW] [GWh/yr]  

BPE wind Tararua Stage 2 36.3 147  

 wind Tararua Stage 1 31.7 128  

 wind Tararua Stage 3 93 375  

 wind Te Rere Hau 48.5 160  

 wind Te Apiti 90.75 258  

BPE (Total)   263.95 1068 0.025 

HAY wind West Wind 143 550 0.013 

HLY wind Te Uku 64.4 225 0.005 

 thermal  1453 8105 0.189 

      
 

Fig.2. Simplified Nodes and Nodes in the study (Blue) 

 

 

3.3. Hydro Storage 

In a hydro-dominated electricity system, hydro storage reflects the hydro power availability to generate 

electricity. Fig.3 shows that hydro inflows with storage were far below average for the most of winter (May, 

June and July). They hit 1% hydro risk curve1 in May, and continued falling. They recovered in mid-September 

when controlled storage was closer to mean and eventually hit mean storage. After this point, storage remained 

above mean storage for the rest of the year. The storage in the North Island is the subtraction of storage in New 

Zealand from the storage in the South Island. The same shapes for the two previously mentioned figures imply 

that, prior to September 2012, the North Island had had stable hydro storage and the South Island had 

experienced dry seasons. 

                                       
1 Hydro risk curve is a measure of the probability of forced electricity cuts. 
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Source: Electricity Authority-Electricity Market Information (EA-EMI) 

Fig.3. Historical Hydro Risk Curves 2012 

 

3.4. Nodal Prices by season and Island 

Nodal prices were further investigated by season and island. As shown in Fig.4, it was found that nodal prices 

varied by season and island. In spring, when hydro was high in the South Island, the nodal price was lower than 

in the North Island. More price spikes were found in the North Island than in the South Island. The rest of figure 

implied that nodal pirces rised during dry periods, and prices were higher in the South Island than the North 

Island when HVDC transferred surplus North Island thermal power southwards to the South Island. When 

adding more thermal generation, more price spikes occurred. 

 

 

 

(a) New Zealand (b) South Island 
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Source: Electricity Authority (EA), Centralised Dataset. 

Fig.4. Nodal Prices by Season and Island 

 

 

3.5. Load and price duration curves 

Fig. 5 illustrates the hourly electricity demand and price duration curve throughout year 2012 in New Zealand. 

The area under the load duration curve represents the total electricity demand for year 2012. The minimum 

electricity demand was around 3000 MW, this was met by the base load plants. The average peak demand went 

over 5300 MW for about 580 hours. Correspondingly, the nodal price went over 150 $ per MWh during peak 

times. The graphs in Fig.5 reveal that nodal prices are significantly correlated with the demand segments. The 

highest nodal price occurs for peak load, and lowest for off peak load.  
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(a) Hourly Electricity Demand Duration Curve for 

18 Nodes (Without node MAN) 
(b) Price Duration Curve  

 

  

 

 

Source: Electricity Authority (EA), Centralised Dataset. 

Fig.5. Load and Price Duration Curves 

 

3.6. Hourly electricity demand 

The electricity demand varies in time of day, week, and season due to the temperature condition, human, and 

commercial activities. Fig.6 illustrates average hourly demand by season and demand segments. In each season, 

we found similar hours for morning and evening peaks. As expected, the highest demand occurred in winter 

and the lowest demand occurred in summer. To investigate the demand impacts for the specified time, we further 

divided each day into three periods: peak, shoulder and night. Based on the Genesis Energy home pricing plans, 

we defined 7am -11am and 5pm-9pm as peak periods, 11am -5pm and 9 pm -11pm as shoulder periods, and 

11pm -7am as night periods. As can be seen in Fig.6 (b), more than 5000 MW was required to meet morning 

and evening peaks. 

3.7. Hourly Nodal prices 

Fig.7 illustrates the hourly average nodal prices by season and demand segments. As is similar to ‘demand’ in 

Fig.6, the price follows morning and evening peaks. Even though the lowest demand was found in summer, the 

price during this time was not the lowest. The lowest price was found in spring. This reveals that the large 

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000 8000

Load duration Curve 2012 

(average 4263.256MW)

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000

Price Duration Curve 2012 ($/MWh)



14 

 

amount of electricity generated by hydro is likely to reduce price in spring. Except for the fact that demand 

influences price, other factors, in particular, the availability of hydro, also determine the nodal price. 

 

(a) Hourly Average Load by Season (b) Hourly Average Load by Demand Segments 

  

Source: Electricity Authority (EA), Centralised Dataset. 

Fig.6. Hourly Average Load by Season and Demand Segments 

 

 

(a) Hourly Average Nodal Price by Season (b) Hourly Average Nodal Price by Demand 

Segments 

  

Source: Electricity Authority (EA), Centralised Dataset. 

Fig.7. Hourly Average Nodal Price by Season and Demand Segments 
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3.8. Wind penetration and nodal prices 

 

Source: Electricity Authority (EA), Centralised Dataset. 

Fig.8. Hourly Wind Penetration and Nodal Prices by Season and Islands 

 

To investigate the relationship between wind penetration and nodal price, we combined the hourly nodal prices 

and wind penetration into one graph, shown in Fig.8. Hourly and seasonal prices are very different between the 

two islands. Given that less than 5% of the electricity is generated by wind in the South Island, wind generation 

is unlikely to impact on nodal price. In contrast, wind plays a significant role in nodal price in the North Island. 

In general, there is a negative relationship between nodal price and wind penetration. This result is consistent 

with Jónsson, et al. (2010). The evidence in Fig.8 indicates that the impact of wind penetration on nodal price 

should be examined in the North Island to avoid aggregation errors. 
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3.9. Hydro share and nodal prices 

   

Source: Electricity Authority (EA), Centralised Dataset. 

Fig.9. Hourly Hydro Share and Nodal Prices by Season and Islands 

 

Because hydro generated approximately 60% of electricity, it is of interest to see the relationship between hydro 

share and nodal price. Hydro share is defined as the proportion of hydro generation to load. A large hydro share 

was found in spring in the South Island, correspondingly, the nodal price was low. During wet periods, surplus 

South Island generated electricity flows to the North Island resulting in higher nodal prices in the North Island.  

Autumn and winter were critically dry time periods in 2012 due to the low hydro power availability in the South 

Island and high electricity demand. The relatively small hydro storage (see Fig.3) drove high nodal price and 

large price spikes. Nodal prices rose during dry periods (prior to September 2012), and prices were higher in 

the South Island than in the North Island when HVDC transferred surplus North Island thermal power 

southwards to the South Island. With the addition of more thermal generation, further price spikes occurred. 

There is no clear relationship between hydro share and nodal price. This relationship needs to be examined in 

econometrics models. 

 

0
2
0

0
4
0

0
6
0

0
0

2
0

0
4
0

0
6
0

0
0

2
0

0
4
0

0
6
0

0
0

2
0

0
4
0

0
6
0

0

0
.1

.2
.3

0
.1

.2
.3

0
.1

.2
.3

0
.1

.2
.3

0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22

spring, North Island spring, South Island

summer, North Island summer, South Island

autumn, North Island autumn, South Island

winter, North Island winter, South Island

hydro share price

N
o
d

a
l 
P

ri
c
e

 (
$
/M

W
h
)

H
y
d

ro
 S

h
a
re

 (
h
y
d
ro

/l
o
a

d
)

Time of Day in Hours

Hydro Share and Nodal Price by Season and Islands



17 

 

3.10. Nodal prices, Wind generation and Thermal Generation at HLY 

 

(a) High wind generation (b) Low wind generation 

  

Source: Electricity Authority (EA), Centralised Dataset. 

Fig.10. Nodal Prices, Wind and Thermal Generation at HLY 

 

Apart from considering the relationships among wind, load and prices, we further explored the behaviour of 

thermal generators and their decisions in regard to generation and prices change. Because the HLY node has 

both wind and thermal generation, this allows the investigation of this interest. However, caution should be 

noted, small wind capacity (64.4 MW) compared to large thermal capacity (1453 MW) may weaken the role 

that wind plays on prices at the HLY node. 

We selected four specific days; 21 March, 22 March, when wind generation was high, and 3 January, 4 January, 

when wind generation was low. 21 and 22 March were two days in autumn, which were drier than 3 and 4 

January based on storage level in Fig.3. In this type of situation, water value was high and hydro generators 

kept water for the future, more profitable use. Nodal prices were high and thermal generators became profitable 

for the despatch of more thermal generation for meeting both base load and peak load. The graphs in Fig.10 

illustrates the relationship among nodal pricing, thermal and wind generation under conditions of both high and 

low wind generation in two intra-days electricity market.  

On 21 and 22 March 2012, on average, there was a high level of wind generation. In general, there was a positive 

relationship between spot price and thermal generation. Prices were high when thermal generation was high. 

Prices seemed to depend on thermal generation. Low prices were found at the night; high prices were found in 
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the mornings and evenings; this corresponded to the periods of peak demand. The relationship between prices 

and wind generation was not clear on 21 March, it was negative on 22 March.  

Similarly, on 3 and 4 January 2012, a positive relationship between thermal generation and prices was found 

except between 1am and 6am on 3 January. We have not found a good explanation for this anomaly. There was 

no clear relationship between nodal prices and wind generation.  

In summary, when wind generation is small, this seems to have no impacts on nodal prices. Prices and thermal 

generation are positively correlated. Thermal generators would like to generate more to obtain high levels of 

profit from high nodal prices; by using more thermal generation to meet base and peak loads, which would push 

higher nodal prices. These statistical analyses are to be examined in our spatial models.  

4. Econometric Framework 

In this section, both non-spatial and spatial models are applied to examine the MOE of wind penetration. The 

spatial Durbin model addresses the potential spill over effects from neighbouring regions. This novel approach 

extends the previous literature (e.g. Munksgaard & Morthorst, 2008; de Miera et al., 2008; Sensfuss et 

al., 2008) on the MOE of wind generation.  

 

Model 1: Non-Spatial Models 

Model 1 examines the MOE of wind penetration in a non-spatial setting. We use ordinary least square (Pooled 

OLS) (without correction for endogeneity), and panel fixed effects (without considering spill-over effects) 

models as benchmarks for comparison purposes. 

 

Price = F1_OLS/FE (wind/load, hydro/load, thermal/load, load, weekday, spring, summer, autumn) 

 

Model 2: Spatial models 

The generalized spatial Durbin model (SDM)2: 

                                       
2 There are a few tests to identify the spatial Durbin model as our best model. First, the augmented Dickey-Fuller unit-roots test is applied 

to test the null hypothesis that price, wind, geothermal, thermal and hydro follow unit root processes. The test results reject the null 

hypotheses. Those variables have no unit root process and they are stationary. Second, depending on the value of parameters in Eq. (1), 

based on Elhorst (2014), we have a number of model specifications: If 𝜃 = 0, then this applies a Spatial Autoregressive Model (SAR) 

by excluding exogenous interaction effects (WX). If 𝜌 = 0, then this excludes contemporaneous endogenous interaction effects (WY). 

If 𝜃 = −𝛽𝜌, then this applies a Spatial Error Model (SEM). If none of above hypotheses is accepted, then this applies a Spatial Durbin 

Model (SDM). Third, among different models, we find results from the Spatial Durbin Model (SDM) perform best. Moran’s I test 
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𝑦𝑖𝑡 = 𝛼 + 𝜌 ∑ 𝑤𝑖𝑗 𝑦𝑗𝑡 

𝑛

𝑗=1

+ ∑ 𝑋𝑖𝑡𝑘

𝐾

𝑘=1

𝛽𝑘 + ∑ ∑ 𝑤𝑖𝑗

𝑛

𝑗=1

𝐾

𝑘=1

𝑋𝑗𝑡𝑘  𝜃𝑘 + 𝜓𝑙𝑜𝑎𝑑𝑖𝑡 + 𝜙 ∑ 𝑤𝑖𝑗𝑙𝑜𝑎𝑑𝑗𝑡

𝑛

𝑗=1

+  ∑ 𝑀𝑖

3

𝑖=1

𝑠𝑒𝑎𝑠𝑜𝑛𝑖𝑡 + 𝜋𝑤𝑒𝑒𝑘𝑑𝑎𝑦𝑖𝑡 + 𝜇𝑖 + 𝛾𝑡

+ 𝜈𝑖𝑡                                                                         (1)    

 

Where: 𝑦(𝑖𝑡 ) denotes nodal price for node i at time t; each yi depends on a weighted average of other 

observations in y, Wy is the spatial lag of y; wij is the element of spatial weight matrix; ψ measures the effect 

of load on nodal price; ϕ measures the impact of load at neighbouring nodes on price; 𝜇𝑖 (i=1, …, n) are 

unobserved effects and are drawn from an independent and identically distributed (iid) standard Gaussian 

random variable; 𝛾t measures time effects;  ρ measures the dependence of yi on nearby y;  the significance of ρ 

indicates the impact of a given nodal price on neighbouring nodes; and,  λ measures the spatial correlation in 

the errors. We assume there are no spatial correlations in the error terms ( 𝜈𝑖𝑡 ). Generation technology share, 

such as wind/load, hydro/load and thermal/load, is represented by X. The matrix product WX denotes an average 

of the generation mix from neighbouring regions  e.g., the nodal prices in node j depend on the generation which 

is generated by the types of technology in j as well as the generation in neighbouring nodes. WXθ is the vector 

of the average Xk over the neighbours of each node. θ measures the impact of X at neighbouring nodes on price;  

we also control for deterministic seasonal factors.  

In Eq. (1), if unobserved effects, ui, are correlated with explanatory variables, cross-section analysis will result 

in omitted unobservable biases. Longitudinal data captures the same node over time. Thus, unobservable effects 

are eliminated by using a panel fixed effects model, such that the estimation results from fixed effects models 

are consistent. However, this model cannot evaluate the time-invariant explanatory variables because they are 

removed by within-group transformation. In contrast, a random effects generalized least squares (GLS) model 

assumes that ui is uncorrelated with explanatory variables in which GLS uses the optimal combination of within-

group and between-group variations. If unobserved effects do not matter, then the GLS estimator is equal to the 

ordinary least squares (OLS) estimator.3 

                                       
statistic reveals a significant positive spatial correlation (Moran’s I = 0.155 with p-value of 0.016) shows that a spatial econometrics 

model should be applied to estimate the impact of wind generation on nodal prices. The estimations were executed in Stata using the 

command “xsmle” (Belotti et al. 2013). 
3 A Hausman test is used to identify whether the random effects GLS estimator is biased. The Hausman test results for the models in 

Tables A1 and 1 reject the null hypothesis that unobserved effects are uncorrelated with the explanatory variables of the equation. 

Therefore, fixed effects estimates were selected over the random effects to address unobserved heterogeneity. 
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Because the MOE is affected by demand segments and seasonal variation, we further decompose the North 

Island sample into two subsamples based on the demand segments and season. Thus, we use three spatial models 

to examine the MOE of wind penetration.   

Model 2a: Spatial fixed effects Durbin Model 

Price=F2a_SDM ((price, wind/load, hydro/load, thermal/load, load) in neighbouring region, wind/load, 

hydro/load, thermal/load, load, weekday, spring, summer, autumn) 

Model 2b: Spatial fixed effects Durbin Model by demand segments 

Price=F2b_SDM ((price, wind/load, hydro/load, thermal/load, load) in neighbouring region, wind/load, 

hydro/load, thermal/load, load, weekday, spring, summer, autumn) 

Model 2c: Spatial fixed effects Durbin Model by season and demand segments 

Price=F2c_SDM ((price, wind/load, hydro/load, thermal/load, load) in neighbouring region, wind/load, 

hydro/load, thermal/load, load, weekday) 

As discussed previously, half-hour nodal prices in the North Island are very different from prices in the South 

Island due to line constraints and line losses. The results would be biased if we estimated New Zealand as a 

whole; this is due to the aggregation error of nodal prices. Moreover, the results from spatial lag estimation 

would be biased due to the weaker dependence between the dispersed nodes across each island. To examine 

these hypotheses, we apply spatial fixed effects Durbin models on the New Zealand sample and the North Island 

sample, respectively. The residual in the models for the North Island sample captures the effects from nodes in 

the South Island. Evidence from the regression results indicates that a spatial model performs better in the North 

Island rather than in New Zealand as a whole. The plausible reason for this is that the larger distance between 

the nodes located on the two islands weakens the spatial impact on nodal prices. Therefore, in this spatial 

analysis, we focus on six nodes in the North Island as highlighted in blue in Fig.2.  

Generation plants supplying the nodes referred to in the previous paragraph are reported in Table 2. The location 

for those particular nodes are quantified and are represented by X and Y coordinates. The spatial weight matrix 

W in Eq. (1) reveals the spatial relationship among observations. It gives information about which of the 

observations are neighbours and how their values are associated with each other. In our analysis, the 6 nodes 

are not contiguous; therefore, distance is used to construct the spatial weight matrix. Nodes with distance dij 

receive a weight that is inversely proportional to the distance between the nodes and 0 if they are beyond a 

certain distance band D (Pisati, 2010).  

The diagonal elements of the spatial matrix W are set equal to zero and the non-diagonal elements are non-zero 

for observations that are spatially close to one another and zero for those that are distant from each other. There 

are no spatial effects if the distance band goes to zero. In this case, the spatial regression results approximate 
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those of ordinary least squares (OLS) estimation for cross-sectional data. We set the distance band to the 

maximum distance to guarantee that all nodes have at least one neighbour. 

In a spatial setting, the effect of an explanatory variable change in a particular unit affects not only that unit but 

also its neighbours (LeSage and Pace, 2009). Two main approaches to the implementation of spatial 

econometrics for controlling spatial heterogeneity are currently in use. In this context, either the nodal price in 

one region is affected by the nodal price in neighbouring regions, or, the nodal price in one region is affected 

by the unknown characteristics of the neighbouring regions. 

Direct effects are applied to test the hypothesis as to whether a particular variable has a significant effect on the 

dependent variable in its own location, and indirect effects to test the hypothesis whether or not spatial spill-

overs exist (LeSage and Pace, 2009). Exogenous interaction effects capture the impact that generation at a 

particular location in some way depends on independent explanatory variables at other locations. Estimates of 

the total effects reflect the sum of the direct plus indirect effects. 

5.  Estimations and Results 

We report on four sets of estimations based on the whole of New Zealand including the North and South Islands 

(see Table A1 in Appendix A.), the North Island (see Table 3), the demand segments (see Table 4), and the four 

seasons and demand segments in the North Island (see Table 5). Non-spatial models, such as OLS, fixed effects 

and random effects are applied to examine the effect of wind penetration on price in New Zealand and in the 

North Island. The potential problem of “omitted unobservable bias” from OLS is addressed in the fixed or 

random effects models. The Hausman test results reject the null hypothesis that individual node specific error 

is uncorrelated with the explanatory variables of the nodal prices equation. Therefore, fixed effects estimates 

were selected over the random effects to address heterogeneity. In addition, the results from spatial models and 

non-spatial models were significantly different, and auxiliary tests confirmed the choice of spatial Durbin model 

as the relevant estimation method to account for geographic spillovers.4 

Following Models 1 and 2a, in Section 3, estimation results are given in Table 3. There are five columns for the 

three specific estimation methods. Columns 1 and 2 report results from pooled OLS, fixed effects estimation 

using non-spatial models. Columns 3 to 5 present the direct, indirect and total effects using a spatial Durbin 

model.  

[Table 3 here] 

The results in row 1 show the MOE of wind penetration when the electricity demand is given. A comparison of 

spatial model results that control for geographic spill-overs, with the pooled OLS and fixed effects results in 

Table 3 give the following findings: 

                                       
4 Among models (SAC, SAR, SEM and SDM), results from the Spatial Durbin Model (SDM) perform best.  
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Firstly, the coefficients on wind penetration are negative and significant in all models, but are larger in the 

spatial model than those in the non-spatial model. The result indicates the prices dampening effects of raising 

wind penetration and an underestimated basis from non-spatial models.  

Secondly, coefficients on hydro share change dramatically, from being positive in non-spatial models to being 

negative in spatial models. On average, enlarging hydro share reduces nodal prices.  

In contrast, the coefficients on thermal share are significant and positive in both non-spatial and spatial models. 

This reflects that thermal energy, as an expensive resource, would increase nodal prices by using more thermal 

power to generate electricity. Moreover, the indirect effects of thermal generation on nodal prices are greater 

than the direct effects. 

These results are consistent with the hypothesis that adding wind reduces nodal prices and that adding thermal 

generation increases nodal prices. 

The extent of MOE depends on the steepness of both the demand and the supply curves. Given the demand, we 

examine the MOE in different demand segments, those are peak, shoulder, and night. Following Model 2b, the 

results are reported in Table 4. 

[Table 4 here] 

For each demand segment, we find negative and significant direct and indirect effects associated with changes 

in both types of neighbourhood wind penetration, suggesting that the higher levels of wind generation in node 

i lead, not only to a reduction in the nodal prices in node i, but also to a reduction in the nodal prices in 

neighbourhood node j.  

Estimates of the direct effects (the main diagonal elements) indicate that a 10% increase of wind penetration in 

node i is associated with a reduction of 0.3$ to 0.5$ per MWh in nodal price at node i.  

Estimates of the indirect effects (spatial spill-overs, the off-diagonal elements) show that spatial spill-over 

effects from changes in wind generation in neighbourhood node i led to a cumulative decrease in nodal prices. 

The estimate for scalar indirect effect accumulates into spill-overs affecting the immediately neighbouring 

regions, and in addition, the neighbours of these regions and the neighbours of the neighbours of the regions, 

and so on. In other words, a change in the wind generation of one node impacts upon the price at neighbouring 

nodes, as well as the neighbours to those neighbouring nodes, and so on. The magnitude of the spill-over effects 

on immediate neighbours would be greater than those on more distant neighbourhoods. The indirect effects for 

wind generation are that a 10% increase in wind penetration at neighbouring node is associated with a price 

drop of 1.4 $ to 2.6 $ per MWh. The magnitude of the average indirect effects coming from neighbouring nodes 

are larger than those of the direct effects from its own node due to, at most, two types of generation technology 

being present at each node.  



23 

 

The total effects of a 10% increase in wind penetration on nodal prices are a reduction of 1.7 $ per MWh at 

night, 2.3 $ per MWh at shoulder, and 3.1 $ per MWh at peak. These effects are statistically significant. The 

strongest impacts of wind penetration on nodal prices are found during peak times, and weakest impacts occur 

during the night. These results are consistent with findings from Nicholson et al. (2010) and Pöyry (2010).  

Due to the heterogeneity across different seasons, we further decompose the North Island sample. Following 

Model 2c, after excluding season dummy variables, the results of the estimation are given in Table 5.  

[Table 5 here] 

For each season and each demand segment, we find negative and significant direct and indirect effects associated 

with changes in both types of neighbourhood wind penetration, suggesting the existence of spill-overs and 

scalability of wind farms.  

In spring, summer, and autumn, we find the strongest MOE of wind penetration on nodal prices during peak 

times, and the weakest MOE occurs during the night. In winter, the strongest MOE is found during the shoulder 

period, the medium MOE occurs during the peak period and the weakest MOE during the night. This can be 

explained by Fig.11. This indicates that the magnitude of MOE depends on the extent of the difference in 

marginal cost of generation technology. 

 

 

 

 

 

 

 

∆𝑃𝑟𝑖𝑐𝑒6 𝑎𝑡 𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 

 

 

 

 
 

Fig.11. Merit-order Effects of Wind in Different Demand 

The coefficients for thermal power change significantly from spring to winter. In summer, autumn and winter, 

thermal generation has the opposite effect on nodal prices to that of wind generation. Because the cost of 

electricity generation is relatively high from thermal plants, the more electricity generated by thermal plants, 

the higher the price will be. This is explained by shifting the merit-order supply curve to the left after substituting 

hydro generation with thermal generation. Consequently, there is a positive impact from thermal generation on 
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Peak $/MWh 

 

Generation in MW 
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nodal prices. The surplus of electricity generated by thermal plants exported to neighbourhood nodes is 

estimated to increase a neighbourhood nodal price due to the high cost of generation. The total effect is that a 

10% increase in thermal share is estimated to increase the price by 0.1 $ per MWh at night in autumn and 0.54 

$ per MWh at peak periods in summer.  

Adding 10% more hydro supply is estimated to reduce the nodal price by 0.13$ per MWh at night, 0.29 $ per 

MWh at shoulder, and 0.46 $ per MWh at peak in spring. There was no significant effect of hydro generation 

on price in autumn when the storage level was low and hit a historical hydro risk curve. This reveals hydro is 

different from wind, and it depends closely to rainfall. During wet seasons, hydro, behaving the same as wind, 

has the MOE. But during dry seasons, hydro generator will consider the opportunity cost of hydro, and provide 

hydro offers based on the marginal cost plus opportunity cost of hydro.  

With regard to the statistically significant coefficients for load support, our hypothesis is that rising loads raise 

nodal prices. The magnitude effects of load on prices is uneven over the four seasons. A relatively small effect 

in winter may indicate that there are small variations in load, or low elasticity of demand, in winter.  

Our results show that ignoring spatial spill-overs leads to an underestimation of the MOE of wind penetration 

on nodal prices. The ability of spatial regression models to provide quantitative estimates of spill-over 

magnitudes and to allow statistical testing for the significance of these represents a valuable contribution of 

spatial regression models to understanding electricity prices. 

Generally, we find raising wind into electricity system tends to reduce nodal prices via the MOE. The extent of 

MOE is greater during peak times. These results are consistent with literature (e.g. Jónsson, et al., 2010; de 

Miera et al., 2008; Weigt, 2009). But, we evaluate the MOE of wind penetration in a spatial econometric model, 

which is the principle contribution of our paper. In addition, estimation results are done by season and demand 

segments. The evidence would reveal how hydro inflow impacts nodal prices during dry and wet seasons, during 

different demand segments when increasing wind penetration into the system. For example, in our model, in 

spring 2012, electricity was imported from the South Island to the North Island via the HVDC link. The amount 

of electricity, mainly generated by hydro in the South Island, balanced the shortage of electricity in the North 

Island. In this situation, the price variation from wind would have been reduced by hydro generation. 

6. Conclusion 

The study examined the MOE of wind penetration on nodal prices in the NZEM based on the centralised dataset. 

The study addresses the heterogeneity that is important for electricity price analysis, and it extends the literature 

as follows. First, a spatial econometric model estimates the direct and indirect MOE of wind penetration on 

nodal prices. Second, we provide estimates of the impact of other types of generation technology on nodal 

prices. Third, we evaluate nodal price effects during dry periods and wet periods because the NZEM is hydro-

dominated and hydro storage affects the MOE. Fourth, the MOE is further examined in different demand 

segments using a spatial econometric model.  



25 

 

After estimations, we find the negative and significant relationship between nodal prices and wind penetration, 

both directly and indirectly. Importantly, the results are based on an electricity supply system that receives no 

subsidies and no grid access priorities. 

The paper’s main contribution follows from the application of the spatial Durbin (SDM) model to estimate the 

spatial spill-over effects of wind penetration on nodal prices. Estimates of the direct effects (the main diagonal 

elements) indicate that a 10% increase of wind penetration in node i is associated with a reduction of 0.3$ to 

0.5$ per MWh in nodal price in node i. The indirect effects for wind generation are that a 10% increase in wind 

penetration at neighbouring node is associated with a price drop of 1.4 $ to 2.6 $ per MWh. The total effects of 

a 10% increase in wind penetration on nodal prices are a reduction of 1.7 $ per MWh at night, 2.3 $ per MWh 

at shoulder, and 3.1 $ per MWh at peak. These effects are statistically significant. 

Our results show that ignoring spatial spill-overs leads to an underestimation of the impact of wind generation 

on nodal prices. Increased amount of wind being injected into the grid lowers nodal price; this result is not 

sensitive to the electricity demand5. Wind speed in one wind site is complementary to the wind speed in another 

wind site. Surplus wind generated electricity can be exported to neighbourhood nodes, which reduces nodal 

price (See Wen and Sharp, 2017). The significantly negative spill-over effects indicate that scalability would be 

a big advantage in a small electricity system like NZ in which it can add turbines as demand increases.  We also 

find that price variation from wind would have been reduced by hydro generation. These have been validated 

from the industrial perspective. The ability of spatial regression models to provide quantitative estimates of 

spill-over magnitudes and to allow statistical testing for the significance of these represents a valuable 

contribution of spatial regression models to the understanding electricity prices. 

With an average load factor of around 45% it is highly likely that wind generation will expand in the near future, 

particularly if demand grows. Adding more intermittent wind generation into the electricity system will create 

challenges for the system operator and market participants. On the one hand, electricity generated by wind is 

independent and non-adjustable with respect to electricity demand. Our results show that high levels of variable 

renewable electricity production can been balanced by adjusting the output from hydro and thermal power 

plants. Unlike Norway, for example, New Zealand cannot achieve balance by adjusting imports/exports. The 

entry of load balancing investments into the market will depend on the cost of alternative technologies relative 

to existing sources of supply. The magnitude of MOE depends on the extent of the difference in marginal cost 

of generation technology. The finding in this study provides system operator and investors with valuable 

information when enlarging wind penetration in need of considering flexibility, and cost of fuel switching in 

time of day and dry or wet seasons. This methodology will be applicable to analysing the cross-border effects 

in any electricity system that has export or import electricity from neighbouring countries such as Switzerland 

or Germany. 

                                       
5 We have examined models with and without load, and found the similar effects of wind penetration on nodal prices. This indicates 

that wind generation is not sensitive to demand.  



26 

 

References 

Anselin, L., Varga, A., Acs, Z., 1997. Local geographic spillovers between university research and high technology 

innovations. J. Urban Econ. 42(3), 422-448. 

Belotti, Federico, Gordon Hughes, and Andrea Piano Mortari. 2013. “XSMLE—a Command to Esimate Spatial Panel 

Models in Stata.” German Stata Users Group Meeting. Retrieved May 7, 2014 

(http://www.stata.com/meeting/germany13/abstracts/materials/de13_mortari.pdf). 

Browne, O., Poletti, S., Young, D., 2012. Simulating market power in the New Zealand electricity market. New Zealand 

Economic Papers, 46(1), 35-50. 

Boschma, R., 2005. Proximity and innovation: a critical assessment. Regional studies, 39(1), 61-74. 

Carlino, G. A., Chatterjee, S., Hunt, R. M., 2007. Urban density and the rate of invention. J. Urban Econ. 61(3), 389-419. 

Clò S, Cataldi A and Zoppoli P., 2015. The merit-order effect in the Italian power market: the impact of solar and wind 

generation on national wholesale electricity prices. Energy Policy, 77, 79-88. 

Cludius, J., Hermann, H., Matthes, F. C., & Graichen, V., 2014. The merit order effect of wind and photovoltaic 

electricity generation in Germany 2008–2016: Estimation and distributional implications. Energy Econ. 44, 302-313. 

Cutler, N. J., Boerema, N. D., MacGill, I. F., Outhred, H. R., 2011. High penetration wind generation impacts on spot 

prices in the Australian national electricity market. Energy Policy, 39(10), 5939-5949. 

Duranton, G., 2007. Urban evolutions: The fast, the slow, and the still. Am. Econ. Rev. 97(1), 197-221. 

Electricity Authority (EA), Centralised Dataset, version, 2013. 

Electricity Authority-Electricity Market Information (EA-EMI), see www.emi.ea.govt.nz for data on electricity supply 

(accessed 30.08.16). 

Electricity Authority (EA), 2016. Electricity in New Zealand. ENZ (2016).Retrieved from 

file:///C:/Users/lwen011/Downloads/Electricity-in-New-Zealand-2016.pdf  

Elhorst, J. P., 2014. Spatial panel data models, Spatial Econometrics From Cross-Sectional Data to Spatial Panels. 

Springer, pp. 37-93. 

Ellison, G., Glaeser, E. L., Kerr, W. R., 2010. What causes industry agglomeration? Evidence from coagglomeration 

patterns. Am. Econ. Rev. 100(3), 1195-1213. 

Escribano, A., Ignacio Peña, J., Villaplana, P., 2011. Modelling Electricity Prices: International Evidence*. Oxford 

Bulletin of Economics and Statistics, 73(5), 622-650.  

Faggian, A., McCann, P., 2009. Human capital, graduate migration and innovation in British regions. Cambridge J. Econ. 

33(2), 317-333. 

Haas, R., Lettner, G., Auer, G.H., Duic, N., 2013. The looming revolution: how photovoltaics will change electricity 

markets in Europe fundamentally. Energy 57, 38-43. 

Haas, R., N.I. Meyer, A. Held, D. Finon, A. Lorenzoni, R. Wiser and K-I. Nishio., 2008. Promoting electricity from 

renewable energy sources -- lessons learned from the EU, U.S. and Japan, in: F.P.Sioshansi (Ed.), Competitive Electricity 

Markets: Design, Implementation, Performance, Elsevier: Amsterdam. 

Jónsson, T., Pinson, P., Madsen, H., 2010. On the market impact of wind energy forecasts. Energy Econ. 32(2), 313-320.  

Ketterer, J. C., 2014. The impact of wind power generation on the electricity price in Germany. Energy Econ. 44, 270-

280.  

LeSage, J. P., Pace, R. K., 2009. Introduction to Spatial Econometrics (Statistics, textbooks and monographs): CRC 

Press. 

Luňáčková, P., Průša, J., & Janda, K., 2017. The merit order effect of Czech photovoltaic plants. Energy Policy, 106, 

138-147. 

McConnell, D., Hearps, P., Eales, D., Sandiford, M., Dunn, R., Wright, M., & Bateman, L., 2013. Retrospective 

modelling of the merit-order effect on wholesale electricity prices from distributied photovoltaic generation in the 

Australian National Electricity Market. Energy Policy, 58, 17-27. 

Ministry of Business, Innovation and Employment (MBIE). Energy in New Zealand. MBIE (2016). Retrieved from 

http://www.mbie.govt.nz/info-services/sectors-industries/energy/energy-data-modelling/publications/energy-in-new-

zealand/energy-in-nz-2016.pdf.  

http://www.stata.com/meeting/germany13/abstracts/materials/de13_mortari.pdf
http://www.mbie.govt.nz/info-services/sectors-industries/energy/energy-data-modelling/publications/energy-in-new-zealand/energy-in-nz-2016.pdf
http://www.mbie.govt.nz/info-services/sectors-industries/energy/energy-data-modelling/publications/energy-in-new-zealand/energy-in-nz-2016.pdf


27 

 

Mellander, C., Florida, R., Stolarick, K., 2011. Here to stay—the effects of community satisfaction on the decision to 

stay. Spatial Economic Analysis, 6(1), 5-24. 

Morthorst, P.E. 2007. Impacts of Wind Power on Power Spot Prices, RISO National laboratory. 

Munksgaard, J., Morthorst, P. E., 2008. Wind power in the Danish liberalised power market—Policy measures, price 

impact and investor incentives. Energy Policy, 36(10), 3940-3947.  

Nicholson, E., Rogers, J., Porter, K., 2010. Relationship between Wind Generation and Balancing Energy Market Prices 

in ERCOT: 2007-2009. NREL Report SR-5500-49415. National Renewable Energy Laboratory (NREL). 

O’Mahoney,A.,Denny,E., 2011.The merit-order effect of wind generation in the Irish electricity market. Proceedings of 

the 30th USAEE/IAEEE North American Conference. Washington D.C., U.S. 

Pisati, M., 2010. Tools for spatial data analysis. Stata Technical Bulletin 60. 

Pöyry (2010). Wind Energy and Electricity Prices. Exploring the ‘merit order effect’The challenges of intermittency in 

North West European power markets. European Wind Energy Association (EWEA) 2010. Summary Report (http: 

//www.poyry.co.uk). 

Sáenz de Miera, G., del Río González, P., Vizcaíno, I., 2008. Analysing the impact of renewable electricity support 

schemes on power prices: The case of wind electricity in Spain. Energy Policy, 36(9), 3345-3359.  

Sensfuß, F., Ragwitz, M., Genoese, M., 2008. The merit-order effect: A detailed analysis of the price effect of renewable 

electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086-3094.  

Tobler, W., 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46: 234–40.  

Weigt, H. 2009. Germany’s Wind Energy: The Potential for Fossil Capacity Replacement and Cost Saving. Applied 

Energy, 86 (10), 1857-1863. 

Welisch, M., Ortner, A., Resch, G., 2016. Assessment of RES technology market values and the merit-order effect–an 

econometric multi-country analysis. Energy & Environment, 27 (1), 105–121. 

Wen, L.,  Sharp, B., 2017.  The Spatial analysis of wind generation on nodal prices: evidence from New Zealand. 

Proceedings of the 40th IAEE International Conference. Singapore. 

Woo, C. K., Horowitz, I., Moore, J., Pacheco, A., 2011. The impact of wind generation on the electricity spot-market 

price level and variance: The Texas experience. Energy Policy, 39(7), 3939-3944.  

http://www.poyry.co.uk/


28 

 

 

TABLE 1 

 Summary of Estimated Reduction in Electricity Price 

Authors Country Model MOE Price Effect 

 

   (% Δ Price) (EUR/MWh) 

Morthorst (2007) West 

Denmark 

No model At >150 MW (5 – 14) 

At > 500 MW (12-14) 

- 

Munksgaard & Morthorst 

(2008) 

West 

Denmark 

No model 12 – 14 

 

4 

 East 

Denmark 

 2-5  

Jónsson, et al. (2010) West 

Denmark 

Non-parametric 17.5 

(Penetration > 4%) 

17 

Sensfuss et al. (2008) Germany PowerACE - 8 

Weigt (2009) Germany Optimisation - 11 

de Miera et al. (2008) Spain Simulation 11.7-25.1 8 

 

 

 

 

TABEL 2 

Types of plant and X&Y coordinates of the 11 nodes 

(6 nodes in the North Island and 5 nodes in the South Island) 

 
Index Node in the North 

Island 

Plant types Y-coordinate 

Latitude 

X-coordinate 

Longitude 

1 BPE – Bunnythorpe Wind -40.2809 175.6396 

2 HAY – Haywards Wind -41.150278 174.981389 

3 HLY – Huntly Thermal, Wind -37.543889 175.152778 

4 OTA – Otahuhu Thermal -36.9512 174.865383 

5 TKU – Tokaanu Hydro -38.98113 175.768282 

6 WKM - Whakamaru Geothermal, Hydro -38.419633 175.808217 

7 TWZ Hydro -44.25 170.1 

8 ROX Hydro -45.475811 169.322555 

9 HWB Wind -45.854722 170.475 

10 TIW Wind -46.598034 168.364105 

11 MAN Hydro -45.521389 167.277778 
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TABLE 3 

Effects of Wind Penetration on Nodal Price 2012 (North Island) 

Non-Spatial (Model 1) and Spatial Models (Model 2a)  

 
 Dependent variable: The nodal prices in 2012 dollars ($/MWh) 

 

 Sample: North Island 

 Model 1 

Non-spatial Models 

 

Model 2a 

A Spatial Durbin Model (SDM) 

 
 (1) (2) (3) (4) (5) 

Explanatory 

Variables 

OLS Panel fixed 

effects 

Direct Indirect Total 

      

Wind/load -6.7228*** -7.8588*** -3.6373*** -17.7377*** -21.3749*** 

 [0.258] [0.258] (0.229) (1.089) (1.317) 

 

hydro/load 0.0612*** 0.1259*** -0.2080*** -0.9258*** -1.1338*** 

 [0.023] [0.031] (0.029) (0.142) (0.171) 

 

Thermal/load 0.4085*** 0.4761*** 0.0300 0.2865** 0.3165** 

 [0.018] [0.028] (0.027) (0.127) (0.154) 

 

load 0.0125*** 0.1173*** 0.0541*** 0.2285*** 0.2827*** 

 [0.001] [0.002] (0.001) (0.007) (0.008) 

 

weekday 14.5410*** 10.1575*** 1.5053*** 5.9491*** 7.4544*** 

 [0.411] [0.404] (0.206) (0.814) (1.020) 

spring -23.5514*** -18.9217*** -4.1572*** -16.4298*** -20.5871*** 

 [0.527] [0.516] (0.277) (1.093) (1.369) 

summer 4.6822*** 12.2171*** 4.0560*** 16.0302*** 20.0862*** 

 [0.525] [0.522] (0.283) (1.121) (1.404) 

autumn 10.9243*** 15.5028*** 5.7142*** 22.5836*** 28.2978*** 

 [0.523] [0.512] (0.274) (1.087) (1.361) 

      

sigma2_e     24.5848*** 

     (0.167) 

Constant 66.3761*** 30.5652***   / 

 [0.590] [0.820]   / 

      

R-squared      

F-test 993.2 1541   / 

R2 0.131 0.0493   0.247 

rho  0.454   0.9525*** 

     (0.000) 

Number of nodes 6 6   6 

Observations 52704 52704   52,704 
Notes: rho in column (2) is the fraction of variance due to individual effects. 

Positive significant spatial parameter rho (ρ) in column (5) indicates that spatial lagged models rather than spatial error 

models are employed into the spatial analysis. Geothermal generation is excluded in the model to avoid multicollinearity. 

The reference variables are weekend and winter. 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Source: Electricity Authority (EA), Centralised Dataset. 
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TABEL 4 

 The Spatial Fixed Effects of Wind Penetration on Nodal Price 2012 (North Island)  

A Spatial Durbin Model (SDM) (Model 2b) 

 Dependent variable: The nodal prices in 2012 dollars ($/MWh) 

 

 Sample: North Island by Demand Segments 

 

 peak shoulder Night 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

VARIABLES Direct Indirect Total Direct Indirect Total Direct Indirect Total 

          

wind/load -5.111*** -26.10*** -31.21*** -3.897*** -19.69*** -23.59*** -2.946*** -14.13*** -17.08*** 

 (0.671) (3.242) (3.908) (0.327) (1.524) (1.845) (0.195) (0.945) (1.139) 

hydro/load 0.0549 0.270 0.325 -0.161*** -0.671*** -0.831*** -0.0694** -0.253* -0.322* 

 (0.0732) (0.357) (0.430) (0.0353) (0.168) (0.203) (0.0306) (0.151) (0.181) 

thermal/load -0.00339 0.165 0.161 0.306*** 1.607*** 1.913*** 0.0484 0.369** 0.417** 

 (0.0742) (0.361) (0.435) (0.0384) (0.183) (0.221) (0.0334) (0.163) (0.196) 

load 0.118*** 0.530*** 0.648*** 0.100*** 0.428*** 0.529*** 0.0739*** 0.339*** 0.413*** 

 (0.00573) (0.0278) (0.0335) (0.00380) (0.0179) (0.0216) (0.00330) (0.0160) (0.0193) 

weekdays YES YES YES YES YES YES YES YES YES 

seasons YES YES YES YES YES YES YES YES YES 

          

rho   0.960***   0.923***   0.965*** 

   (0.000610)   (0.00115)   (0.000541) 

sigma2_e   33.28***   33.29***   5.965*** 

   (0.391)   (0.389)   (0.0705) 

          

Observations 17,568 17,568 17,568 17,568 17,568 17,568 17,568 17,568 17,568 

R-squared 0.173 0.173 0.173 0.391 0.391 0.391 0.378 0.378 0.378 

Number of id 6 6 6 6 6 6 6 6 6 

Notes: Based on Genesis Energy home pricing plans (https://www.genesisenergy.co.nz/understand-our-pricing-plans), we define 7am-11am and 5pm-9pm as peak periods, 11am-5pm, 9pm-

11pm as shoulder periods, and 11pm-7am as night periods. 

Positive significant spatial parameter rho (ρ) indicates that spatial lagged models rather than spatial error models are employed into the spatial analysis.  

The models include weekdays and seasonal variables. Full results are available upon request. 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.  Source: Electricity Authority (EA), Centralised Dataset. 

https://www.genesisenergy.co.nz/understand-our-pricing-plans
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TABLE 5  

The Spatial Fixed Effects of Wind Penetration on Nodal Price 2012 (North Island) 

A Spatial Durbin Model (SDM) (Model 2c) 

 Dependent variable: The nodal prices in 2012 dollars ($/MWh) 

 

 Sample: North Island by Season and Demand Segments 

 

 spring summer autumn winter 

 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

VARIABLES peak shoulder night peak shoulder night peak shoulder night peak  shoulder night 

             

Wind/load -26.51* -15.91*** -14.01*** -36.41*** -33.68*** -21.43*** -43.03*** -38.68*** -12.74*** -14.05* -19.94*** -11.69*** 

 (15.85) (3.693) (1.833) (3.897) (3.536) (2.548) (5.434) (3.293) (2.448) (7.884) (5.973) (2.706) 

Hydro/load -4.582** -2.837*** -1.340*** -1.782*** -2.301*** 1.405*** 1.952*** 2.125*** 0.409 -0.393 -0.484 -1.202*** 

 (1.797) (0.418) (0.249) (0.537) (0.456) (0.411) (0.677) (0.441) (0.419) (0.635) (0.472) (0.314) 

Thermal/load -5.857** -1.519** 2.323*** 5.449*** 5.025*** 3.979*** 3.328*** 3.156*** 0.995*** 0.0616 3.045*** 1.222*** 

 (2.347) (0.602) (0.435) (0.314) (0.271) (0.285) (0.435) (0.274) (0.325) (0.582) (0.472) (0.319) 

load 0.997*** 0.573*** 0.376*** 0.741*** 0.685*** 0.538*** 0.852*** 0.547*** 0.642*** 0.355*** 0.590*** 0.295*** 

 (0.141) (0.0498) (0.0276) (0.0449) (0.0419) (0.0497) (0.0408) (0.0349) (0.0400) (0.0307) (0.0348) (0.0269) 

weekday YES YES YES YES YES YES YES YES YES YES YES YES 

             

rho 0.985*** 0.973*** 0.984*** 0.954*** 0.951*** 0.972*** 0.930*** 0.932*** 0.966*** 0.931*** 0.879*** 0.963*** 

 (0.000466) (0.000807) (0.000465) (0.00140) (0.00149) (0.000881) (0.00208) (0.00203) (0.00106) (0.00210) (0.00357) (0.00116) 

sigma2_e 13.88*** 3.650*** 0.619*** 13.95*** 14.38*** 4.657*** 44.17*** 21.23*** 6.909*** 37.97*** 75.76*** 4.702*** 

 (0.330) (0.0856) (0.0146) (0.329) (0.339) (0.111) (1.030) (0.495) (0.163) (0.888) (1.755) (0.111) 

             

Observations 4,368 4,368 4,368 4,368 4,368 4,368 4,416 4,416 4,416 4,416 4,416 4,416 

R-squared 0.027 0.140 0.269 0.514 0.512 0.466 0.391 0.321 0.227 0.210 0.258 0.180 

Number of id 6 6 6 6 6 6 6 6 6 6 6 6 
Notes: Based on Genesis Energy home pricing plans (https://www.genesisenergy.co.nz/understand-our-pricing-plans), we define 7am-11am and 5pm-9pm as peak periods, 11am-5pm, 9 pm-

11pm as shoulder periods, and 11pm-7am as night periods. 

Positive significant spatial parameter rho (ρ) indicates that spatial lagged models rather than spatial error models are employed into the spatial analysis.  

The models include weekday’s variables. Full results are available upon request. 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Source: Electricity Authority (EA), Centralised Dataset. 

https://www.genesisenergy.co.nz/understand-our-pricing-plans
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Appendix A. Other Estimation Results  

 

New Zealand as a whole (Table A1) 

a. Non-spatial model  

Price= FA1_OLS/FE (wind/load, hydro/load, thermal/load, weekday, load, spring, summer, autumn) 

 

b. Spatial model  

Price=FA1_SDM ((price, wind/load, hydro/load, thermal/load, load) in neighbour region, wind/load, hydro/load, 

thermal/load, weekday, load, spring, summer, autumn) 

 

 

Table A1 Nodal price 2012 (New Zealand) 

 Dependent variable: The nodal prices in 2012 dollars ($/MWh) 
 

 Sample: New Zealand 

 Non-spatial model Spatial model 

 
 (1) (2) (3) 

VARIABLES Pooled OLS Panel fixed effects A Spatial Durbin 

Model(SDM) 

    

wind/load -7.1328*** -5.8817*** 23.06*** 

 [0.318] [0.330] (3.519) 

hydro/load -0.2313*** -0.2096*** -4.571*** 

 [0.025] [0.037] (0.415) 

thermal/load 0.0975*** 0.0503 -13.62*** 

 [0.022] [0.036] (0.465) 

load 0.0006 0.1151*** 0.308*** 

 [0.001] [0.002] (0.0211) 

Weekday 12.9077*** 9.9838*** 0.213 

 [0.383] [0.381] (2.362) 

Spring -46.1579*** -43.2000*** -79.27*** 

 [0.490] [0.488] (2.590) 

Summer -0.0056 4.4955*** 7.833*** 

 [0.489] [0.489] (2.729) 

Autumn 22.9278*** 25.8553*** 59.20*** 

 [0.487] [0.483] (2.368) 

    

Constant 82.4220*** 49.7062*** / 

 [0.530] [0.817] / 

    

F-test 2932 3322  

R2 0.195 0.0867 0.170 

R2_W / 0.216 0.170 

Sample size 96624 96624 96624 

Number of groups 11 11 11 

Notes: Positive significant spatial parameter rho (ρ) in column (3) indicates that spatial lagged models rather than spatial error models 

are employed into the spatial analysis. Geothermal generation is excluded in the model to avoid multicollinearity. The reference 

variables are weekend and winter.  

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. 

Source: Electricity Authority (EA), Centralised Dataset. 

 

 


