Load Management at Distribution Grid Level: **A Pricing Model following the 'Polluter Pays Principle'**

Marlene Gruber, M. Sc. (TUM)

15th IAEE European Conference <u>Session 5G: Flexibility & Storage III</u> 6th September 2017, Vienna, Austria

Introduction

Current Pricing System

	Pricing system for wi	thdrawal with load me	etering		
Network level	Annual utilization time				
	< 2500 h/a		>= 2500 h/a		
	Demand Rate (DR 1)	Energy Rate (ER 1)	Demand Rate (DR 2)	Energy Rate (ER 2)	
	€/kW	Ct / kWh	€/kW	Ct / kWh	
NL 5: Medium Voltage (MV)	3.30	3.61	77.82	0.62	
NL 6: Transformation Level MV/LV	5.15	3.69	83.59	0.55	
NL 7: Low Voltage (LV)	5.88	3.68	79.79	0.73	
	Pricing system for with	drawal without load r	netering		
Network level	Base Price		Energy Rate		
	€/a		Ct / kWh		
NL 7: Low Voltage (LV)	20.00		4.11		

Page 3

Page 4

MinLoad pricing scheme			
	Respective grid costs (A)		
Network level			
NL 5	4 146 300 €		
NL 6	870 300 €		
NL 7	3 102 000 €		
Σ	8 118 600 €		

MinLoad NL 5

- = Total amount of electricity demand / 8 760 h
- = 165 523 059 kWh / 8 760 h
- = 18 895 kW

Solution Approach: MinLoad Pricing Model

Model Customer NL 7₁

NL: 7 – Electricity Demand: 5 300 kWh – MinLoad: 0.6 kW – Peak Load: 1.4 kW

→ With Peak Load Contribution

```
Total cost [€] =
= MinLoad [kW] * BDR<sub>NL7</sub> [€/kW] + (Peak Load – MinLoad) [kW] * PDR<sub>NL7</sub> [€/kW]
= 0.6 kW * 352 €/kW + (1.4 kW – 0.6 kW) * 114 €/kW
= 211.20 € + 91.20 €
= 302.40 €
```

Solution Approach: MinLoad Pricing Model

Results

- 1. The MinLoad pricing model does allocate the grid costs following the 'Polluter Pays Principle'; it incentivizes costumers to smooth their load profiles and to avoid peak loads.
- Covering the total peak loads is very expensive and electricity storages are not economically viable (only financed by grid charges) at present
 → BUT: there is a savings potential
 A the reset off signature degree is a saving potential
 - \rightarrow the most efficient technology will be found out over the years
- 3. Problem:

Monetary savings at the network levels 5 – 7 mean less grid revenues for the operator of the upstream network level

- \rightarrow over time, grid charges (NL 4) will increase
- \rightarrow incentives to reduce peak loads will increase
- \rightarrow potential savings will decrease
- \rightarrow the effect will be annulled over time \rightarrow second step of the pricing model

Outlook

Thank you for your attention! Questions?

Marlene Gruber, M. Sc. (TUM)

Chair of Business Economics and Biogenic Resources Straubing Center of Science Petersgasse 18 D-94315 Straubing

Phone Fax Email Internet +49 9421 187 264 +49 9421 187 211 m.gruber@wz-straubing.de www.wz-straubing.de

Storage based Load Management System

Current Pricing System

Results

