Imperial College Business School

Imperial means Intelligent Business

Optimal storage in a renewable system -Ignoring renewable forecast is not a good idea! Joachim Geske, Richard Green

15th IAEE European Conference 2017 3rd to 6th September 2017, Vienna, Austria

Motivation

- Storage: potential to increase efficiency of electrical systems especially in the context of integrating intermittent renewable technologies.
 → load equilibration → adjustment of generation structure → efficiency
- Our previous work ("Optimal storage investment and management under uncertainty – It's costly to avoid outages!", IAEE Bergen, 2016) showed how differently storage operates if it faces a stochastic future rather than a known future
- But the near future is actually quite well-known...

What is the value of forecasting in a system with storage?

Optimal storage in a renewable system – Ignoring renewable forecast is not a good idea!

- 1. Information, expectation, residual load Markov process, accuracy
- 2. 24h-residual load pattern: definition, transition, accuracy
- 3. Stochastic electricity system model (SESeM-Patt) structure
 - a. Electricity generation and storage operation within pattern
 - b. Storage operation in-between pattern
 - c. Capacity optimization
- 4. Results of a case study 300 GWh storage capacity
- 5. Conclusion

- 1. What's wrong with the residual load Markov process?
 - Most straightforward way of modelling residual load components: Markov Process estimated by hourly e.g. wind generation - perfect in the long run, poor in the short run!
 - Problem: we know more about the future due to forecasting. To derive an accurate optimal storage strategy, forecasting of residual load has to be considered!
 - We do not know an "off the shelf" stochastic process that resolves the problem.
 What to do?
 - Additional Information: add future process realizations as states to condition the optimal strategy. Wind: up to 100 hours/states required → infeasible!
 - Process adjustment: perfect knowledge for 24 hours (pattern) + Markov transitions between the patterns. Definition of a new Markov process based on 24-hour residual load vectors rather than on hourly residual load values!

2. Pattern definition and ...

- Implementation: Residual load composed by load factors for sun and wind scaled by 40 GW each subtracted from load – Germany 2011-2015
- Building 10 clusters and considering the 24h-cluster mean:

2. ... accuracy

- Long term: expected residual load (pattern weighted with stationary probabilities)
- Very good!

- Short term forecasting error: mean average error of the expected vs. actual residual load by lead time
- Improved, satisfying!

- 3. Stochastic electricity system model
- a. Electricity generation and storage operation within pattern
- Most simple 24 hour perfect foresight electricity system model
- Generation technologies with capacities k and generation g; fix and variable cost:
- Minimize 24-h operation cost over generation and storage

		Technology	Variable cost	Fix cost	24
	C ^{Var} (Patterr		€/MWh	€/KW	$C^{var}g_h$
•	Restrictions:	Nuclear	22.5	3250	
		IGCC	25	2500	
	o generatio	Coal	27	2000	
	 Residual 	Combined Cycle	40	800	
	 SOCIn give 	Cobust Turb.	55	650	
	 Storage c 	Lost Load	5500	0	

- 3. Stochastic electricity system model
- a. Electricity generation and storage operation within pattern

Example:

- Pattern 5, State of charge 30GWh
- Action net storage +10 GWh at 24.00
- Example: Capacities {29.01,5.53,9.554,13.359,0,12.5}

→ Variable cost for every pattern-StateOfCharge-storage combination

- 3. Stochastic electricity system model
- b. Storage operation in-between pattern
- Now: determination of the best action (storage) still given capacities
- It can be shown that operation cost minimization by inter-pattern storage (Markov decision process) is equivalent to a "minimum cost flow" problem
- \rightarrow Solution as linear program
- \rightarrow Optimal storage action in each state!
- \rightarrow Total 24h expected operation cost \rightarrow extrapolation to 40 years total operation cost

c. Capacity optimization

- Capacity optimization: minimize fix cost + 40 years operational cost!
- It is considered that each change in capacities induces changes in intra-pattern storage and generation and inter-pattern storage
- We are able to solve this problem numerically in a case study for 300GWh storage

4. Results Optimal inter-pattern storage

4. Results

Optimal system structure – depending on forecasting

	F							
Information			24h-Patter	ttern				
and Storage Scenario		Without storage	300 GWh intra pattern st	300 GWh intra+inter pattern st				
Generation capacities [GW]								
Nuclear		27	26	29				
IGCC	-	6	8	5				
Coal		13	11	9				
CCGT	-	15	12	13				
Comb. Turbine		5	0	0				
Lost Load		0	0	12				
Total		67	58	57				
Total cost [Mio €]		487350	475806	472699				
		Basis	-2.3%	-3%				

Length of perfect forecasting window [h]

5. Conclusion

- We developed a stochastic multi scale model of the electricity system (from hourly basis to a 40 year lifespan)
- Capable of information modelling (forecasting), deviation of generation & storage decisions (operation) and capacity optimization (investment)
- Even though a lot is known about the near future there is still uncertainty.
 → Waiting and reservation levels in the storage to reduce the negative impact of "bad" events, but reducing the potential in "good" cases
- In a numerical case study with 300 GWh storage option
 - With 24-hour pattern 76% of the efficiency gain by storage could be realized compared to perfect foresight
 - Without any forecasting the efficiency gain dropped to 30%
 - 18% of the efficiency gain in the 24-hour pattern was related to interpattern storage
- Inter-pattern storage requires reservation levels. Might be difficult to implement via competitive storage operators

Transition matrix

	MeanRL	Probs	1	2	3	4	5	6	7	8	9	10
1	17.3	0.03	0.17	0.09	0.13	0.2	0.17	0.13	0.04	0.	0.07	0.
2	23.6	0.05	0.12	0.44	0.02	0.01	0.28	0.	0.12	0.	0.01	0.
3	27.6	0.11	0.09	0.02	0.26	0.18	0.08	0.21	0.05	0.09	0.02	0.01
4	33.8	0.13	0.05	0.03	0.3	0.19	0.05	0.22	0.05	0.07	0.03	0.
5	34.9	0.07	0.	0.13	0.04	0.04	0.24	0.06	0.17	0.08	0.17	0.07
6	40.	0.19	0.01	0.	0.13	0.25	0.04	0.32	0.05	0.13	0.05	0.01
7	43.2	0.1	0.01	0.06	0.03	0.06	0.15	0.14	0.25	0.09	0.14	0.07
8	45.9	0.13	0.	0.	0.03	0.14	0.	0.31	0.03	0.39	0.06	0.04
9	50.5	0.11	0.	0.	0.02	0.04	0.01	0.12	0.17	0.16	0.33	0.14
10	57.5	0.08	0.	0.	0.	0.	0.01	0.01	0.11	0.03	0.27	0.57

1. Representation of residual load uncertainty Load duration curve

1. Representation of residual load uncertainty

3. Model – inbetween pattern Model

• Most simple stochastic electricity system model

 $\min_{k,\pi} c^{fix}k + \mu_{Sto} \lim_{T \to \infty} \frac{1}{T+1} E[C^{Var}(Pattern, SOCIn, \Delta SOC|k)]$

- Solution: Decision rule π (strategy) for every pattern to exploit new information about the next pattern to come!
- Numerical solution of a series of Markov Decision Problems (MDP) for strategy and stationary probabilities | capacities
- Case: 300 GWh storage option, 20 GWh steps.
- Select the change in SOC given according cost and transition probabilities between pattern.

Daten Kosten, Scenario – Erneuerbare Kapazitäten Algorithmus

Results: Storage Strategy

	P1 - 5	<i>P</i> 6 – 7	P8 - 10
P1 - 5	0.66	0.21	0.12
<i>P</i> 6 – 7	0.37	0.38	0.26
<i>P</i> 8 – 10	0.09	0.25	0.66

Residual load uncertainty

