

General Regionalization Heuristic to Map Spatial Heterogeneity of Macroeconomic Impacts: The Case of the Green Energy Transition and the Manufacturing Sector in NRW

Daniel Höwer, Christian A. Oberst and Reinhard Madlener

15th IAEE European Conference 2017 Vienna, Austria, September 3-6, 2017

> FCN I Future Energy Consumer Needs and Behavior

1. Introduction

- 2. Method: regionalization heuristic
- 3. Application: sustainable energy transition and the manufacturing sector in NRW
- 4. Selected Results
- 5. Conclusion and Outlook

Introduction Industrial Transformation in NRW in Light of the *Energiewende*

2-year research project (2015-2017) 6 partners (Virtual Institute "Transformation – Energiewende NRW")

Economic Effects of the Energiewende in NRW

- I-O Analysis of expanding renewables
- Regional distribution
- Real options analysis on flexibilization of fossil-fueled power plants

Success Factors for Transformation Processes

Design of Transformation Processes

www.vi-transformation.de

Introduction Research Motivation

> Empirical insights on the spatially disaggregated level can often either:

- not be provided due to a lack of available data or
- only be provided with significant time delay.

Modeling spatial variations of macroeconomic effects is valuable for:

- a. providing a better understanding of the regional development by the (regional) decomposition of macroeconomic effects
- b. designing region-specific policies
- c. anticipating and assessing local and regional acceptance of policy measures
- North Rhine-Westphalia (NRW) as the largest and very energy-intensive federal state, heavily affected by the transformation / transition towards renewables

Introduction Aim

- Development of a relatively simple regionalization heuristic with a consistent mathematical framework to:
 - Regionalization of macroeconomic impacts
 - Investigation of macroeconomic effects with high spatial heterogeneity and relatively small overall net impact on the macroeconomic development
- Efficient mapping of spatial variation / heterogeneity of macroeconomic effects / impacts and developments

- Input-output analysis on the aggregated economic effects of the Energiewende in NRW (Többen & Kuckshinrichs, 2016)
 - Impacts of the expansion and promotion of renewable energies on industrial value creation in 2011
- > 5 impact channels / mechanisms:

A. Operation of assets

- 1) Demand for maintenance, spare parts; labor income Expansionary.
- 2) Direct and indirect impact of EEG levy Contractionary.
- 3) Preferential dispatch / Merit order effect (displacement of conventional power generation assets and related fuel, maintenance etc. needs Contractionary.

B. Production of assets

- 4) Demand for intermediate products, increased consumption/PP Expansionary.
- 5) Replacement of conventional gen assets Contractionary.

Main results:

- The operation and construction of renewable energies in 2011 resulted in a positive overall industrial value creation
- Measured by the size of NRW (21% of German population and GDP) the value created is low compared to the rest of the country

Introduction Distribution of Total Effects from Producing and Operating Renewable Energy Assets Among 35 Sectors in NRW

> 3 industry branches identified (Kobiela & Vallentin, 2016):

- Machinery
- Chemicals
- Fabricated metals

These branches are particularly important for the Energiewende in NRW:

- Include a broad range of companies and employees
- Very energy- and CO₂-intensive
- Produce relevant equipment for the Energiewende
- Particularly affected by structural change in the energy sector

- The regionalization heuristic is applied to results from the I-O analysis undertaken by Kobiela & Vallentin (2016)
- > Detailed regional economic investigation in North Rhine-Westphalia (NRW) of:
 - Industrial value creation
 - Private consumption
 - Changes in economic structure
 - Regionalization procedure
 - by 53 labor market districts
 - by commuter classes (Oberst 2011)
 - by labor market regions (Kropp & Schwengler 2011)

Method

11

1. Delineation of Functional Regions

- Contemplation of two well comparable delineation approaches
- Labor markets by Eckey et al. (2006)
- Commuting areas by Oberst (2011)

2. Regional Assignment

- Modeling of macroeconomic effects with a simplified heuristic
- fitting macroeconomic effects with high regional differences
- but no central influence on the assessed Developments
- **3**. Computation of **Regionalization Vector r** (\rightarrow see *FCN Working Paper* for details)
 - Assuming that value added is distributed uniformly among all employees in a given branch

Selected Results 1/3

12

Regionalized macroeconomic net effects for the Machinery branch

- Largest industry branch in NRW
- Benefit the most from the expansion of renewable energies
- Highest estimated individual effect occurs on the rural district in the north of the state (Warendorf), where over 1/3 of the employees (9,843) work
- Broad regional spread of the effects in the branch
- Big chance for widespread positive economic effects by expansion of know-how in renewable energy plant production

......

Selected Results 2/3

Regionalized macroeconomic net effects Fabricated metals branch

- Highest absolute and relative value added effects of the branches analyzed
- High regional concentration of the value added effects (eastern and southeastern Ruhr-Region, Bergisches Land)
- Chance of further increased value added effects by use of tailored political instruments
- Risk of strong negative economic effects by changing market conditions

Selected Results 3/3

Regionalized macroeconomic net effects for the Chemicals branch

- Lower absolute value added effects than for the Machinery branch, but comparable relative effects
- Highest effects in Cologne/ Bonn and Dusseldorf (incl.
- I ow benefits in the western regions of NRW
- High concentration of the value added effects on a few regions suggests strongly site-specific policy measures to stimulate value

Conclusion and Outlook

We introduce a general **regionalization heuristic for mapping the spatial heterogeneity** of macroeconomic impacts – applied to the case of the sustainable energy transition in North Rhine-Westphalia, Germany

> We develop and apply **several new metrics** which:

- can be used to assess regional heterogeneities in a variety of contexts
- illustrate the potential variance across regions
- enable the discussion of economic effects separately from the net macroeconomic impact in a standardized, mathematically well-defined framework
- Each regionalization vector can be used to regionalize a certain class of effects
 - Once a vector is established, it can easily be transferred to another problem containing effects of the same class
 - The framework is particularly useful if effects with high regional heterogeneity and small overall impact are to be discussed
- Future research ideas: To what degree do the assumptions hold for the considered sectors? What are the dynamics of the effects (trends)?

Contact

E.ON Energy Research Center Institute for Future Energy Consumer Needs and Behavior (FCN) Mathieustraße 10, 52074 Aachen Germany Prof. Dr. Reinhard Madlener, Dr. Christian Oberst T +49 241 80 49820, F +49 241 80 49829 <u>RMadlener@eonerc.rwth-aachen.de</u> <u>Coberst@eonerc.rwth-aachen.de</u> http://www.eonerc.rwth-aachen.de/fcn

FCN | Future Energy Consumer Needs and Behavior

Appendix

FCN | Future Energy Consumer Needs and Behavior

F

Regionalization metrics: Machinery Branch

Metric	53 Districts	6 Labor Market Regions	16 Functional Economic Regions
κ ^{mach} [m.Euro]		117	
$\max(r^{mach})[m.Euro]$	6 * 53		18
$\min(\mathbf{r}^{mach})[m.Euro]$	0 4.5		0.3
spread [m. Euro]	6.2	48.8	17.5
$\operatorname{var}(\boldsymbol{r}^{mach})[m.Euro]$	$12.5 * 10^{6}$	$2.6 * 10^8$	$2.9 * 10^{7}$
$\sigma(r^{mach})[m.Euro]$	1.6	1.6	5.4
$\operatorname{var}(l^{mach})[-]$	$1.7824 * 10^{-4}$	$1.8596 * 10^{-2}$	$2.1307 * 10^{-3}$
$\sigma(l^{mach})[-]$	$1.3351 * 10^{-2}$	$1.3637 * 10^{-1}$	$4.6159 * 10^{-2}$
spread ratio [-]	-	9.5848	0.35354
σ -ratio [–]	-	0.0979	0.289239
$\kappa^{mach} \left[\frac{Euro}{pers} \right]$		102.63	
$\max(\hat{r}^{mach}) \left[\frac{Euro}{pers}\right]$	219	277	297
$\min(\hat{r}^{mach})[rac{Euro}{pers}]$	0	161	59
spread $\left[\frac{Euro}{pers}\right]$	219.37	115.57	237.49
$ ext{var}(\hat{m{r}}^{mach})$ [Euro]	2152.3	1896.3	4338
$\sigma(\hat{\pmb{r}}^{mach})$ [Euro]	46.393	43.546	65.864
$\operatorname{var}(\boldsymbol{l}^{mach})[-]$	0.156243	0.13765	0.3149
$\sigma(l^{mach})[-]$	0.39527	0.37102	0.56116
spread ratio [-]	-	1.8981	0.9237
σ-ratio [–]	-	1.27401	0.70425

Table 3: Summary of regionalization metrics machinery branch

Regionalization metrics: Chemicals Branch

able 5. Summary of regionalization metrics chemicals branch					
Metric	53 Districts	Regions	Economic Regions		
κ^{chem}	$94.85 * 10^6$	94.85 * 10 ⁶	$94.85 * 10^6$		
$\max(r^{chem})[Euro]$	$8.732 * 10^{6}$	$54.391 * 10^{6}$	$25.34 * 10^{6}$		
$\min(\pmb{r}^{chem})$ [Euro]	0.0	$0.36126 * 10^6$	0.0		
spread [Euro]	$8.732 * 10^{6}$	$54.029 * 10^{6}$	$25.34 * 10^{6}$		
$\operatorname{Var}(r^{chem})[Euro]$	$4.827 * 10^{12}$	$3.619 * 10^{14}$	$5.622 * 10^{13}$		
$\cdot \sigma(\pmb{r}^{chem})$ [Euro]	$2.197 * 10^{6}$	$1.902 * 10^{6}$	$7.499 * 10^{6}$		
$\operatorname{Var}(l^{chem})[-]$	$5.366 * 10^{-4}$	$4.023 * 10^{-2}$	$6.250 * 10^{-3}$		
$\sigma(l^{chem})[-]$	$2.315 * 10^{-2}$	$2.005 * 10^{-1}$	$7.906 * 10^{-2}$		
spread ratio [-]	-	0.16161	0.34459		
σ -ratio [–]	-	0.116	0.293		
$\kappa^{chem} \left[\frac{Euro}{pers} \right]$	102.19	102.19	102.19		
$\max(\hat{r}^{chem}) \ [rac{Euro}{pers}]$	687.92	366.8	389.04		
$\min(\hat{r}^{chem})[rac{Euro}{pers}]$	0.0	12.208	0.0		
spread $\left[\frac{Euro}{pers}\right]$	687.92	354.59	389.04		
$\operatorname{Var}(\hat{r}^{chem})[Euro]$	14370	14135	15915		
$\cdot \sigma(\hat{\boldsymbol{r}}^{chem})[Euro]$	119.88	118.89	126.16		
$\operatorname{Var}(l^{chem})[-]$	1.5973	1.5712	1.769		
$\sigma(l^{chem})[-]$	1.2638	1.2535	1.33		
spread ratio [-]	-	1.9400	1.7682		
g-ratio [_]		1 0083	0.95023		

Regionalization metrics: Fabricated Metals Branch

Table 3: Summary of regionalization metrics fabricated metals branch				
Metric	53 Districts	6 Labor Market	16 Functional Economic	
		Regions	Regions	
κ ^{met} [Euro]	247.92 * 10 ⁶	$247.92 * 10^6$	$247.92 * 10^6$	
$\max(r^{met})$ [Euro]	$38.367 * 10^6$	148.46 * 10 ⁶	$63.507 * 10^{6}$	
min(r ^{met}) [Euro]	0.0	$4.797 * 10^{6}$	0.0	
spread [Euro]	38.367 * 10 ⁶	143.66 * 10 ⁶	$63.507 * 10^{6}$	
Var(r ^{met}) [Euro]	3.9786 * 10 ¹³	2.3664 * 10 ¹⁵	$2.4359 * 10^{14}$	
$\cdot \sigma(\boldsymbol{r}^{met}) [Euro]$	$6.3076 * 10^{6}$	$4.8645 * 10^7$	$1.5607 * 10^7$	
Var(<i>l^{met}</i>) [–]	$6.473 * 10^{-4}$	$3.85 * 10^{-2}$	$3.9631 * 10^{-3}$	
$\sigma(l^{met})[-]$	$2.5442 * 10^{-2}$	$1.9621 * 10^{-1}$	$6.2953 * 10^{-2}$	
spread ratio [-]	-	0.28491	0.60413	
σ -ratio [–]	-	0.12896	0.40195	
$\kappa^{met} \left[\frac{Euro}{pers} \right]$	210.18	210.18	210.18	
$\max(\hat{\boldsymbol{r}}^{met}) \ [\frac{Euro}{pers}]$	694.44	996.99	996.99	
$\min(\hat{r}^{met}) \left[\frac{Euro}{pers}\right]$	0.0	182.434	0.0	
spread $\left[\frac{Euro}{pers}\right]$	694.44	814.66	996.99	
$\operatorname{Var}(\hat{m{r}}^{met})[Euro]$	26760	77496	78089	
$\cdot \sigma(\hat{\boldsymbol{r}}^{met}) [Euro]$	163.58	278.38	279.44	
$Var(l^{met})[-]$	0.43537	1.2608	1.2705	
$\sigma(l^{met})[-]$	0.65983	1.1229	1.1272	
spread ratio [-]	-	0.85242	0.6953	
σ -ratio [–]	-	0.58763	0.58539	

onomic Impacts Sep 6, 2017

22