

Energiegespräche im TMW

Christian K. Holzinger

Ing. Eur-Ing

Allg. ger. beeid. u. zert. Sachverständiger

Firmenprofil:

Technisches Büro – Ingenieurbüro

Beratung und Planung für

Kälte - Klima - Energie

und technische Gebäudeausrüstung

Umweltfreundliche Kältemittel Trends und Beispiele.

Österreich mit Sonderstatus

- Welches Regelwerk als Basis für die Entscheidung?
- 1. EN 378 Version 2000, letztgültige Version 2000 aus 03/2004 (Annex ZA wurde gestrichen!)
- 2. EN 378 Schlussentwurf aus 11-2003
- 3. Kälteanlagenverordnung aus 1969
- 4. Bundesgesetzblatt 447 vom 10.12.2002
- Welche Kältemittel ab 01.01.2008 ?

CO₂ – Reduktion als Grundsatz

- CO₂ Klimaveränderung durch Treibhauseffekt
- Senkung des Energieverbrauchs
- Energieumwandlungssysteme bevorzugen, die geringe CO₂ Emissionen verursachen
- Optimierung vorhandener Systeme
- Ersatz der Sicherheitskältemittel
- Gibt es 2 oder 3 Auswegszenarien?

Lösungswege Kältemittelgruppen

- Brennbare Kältemittel (Propan Butan Isobutan Propylen - Zuordnung für den jeweiligen Einsatzzweck
- Ammoniak und Mischungen und
- CO₂ als Kältemittel?
- Solargeführte Kühlung mit Absorption sowie Adsorption
- Sinnvolles Miteinander durch diverse Optimierungen?

Regelwerke als Ausführungsgrundlagen

- Richtlinie 94/9/EG vom 23.03.1994 (ATEX Richtlinie), zur Angleichung der Rechtsvorschriften der Mitgliedstaaten für Geräte und Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen.
- Ausgeführt im Bundesgesetzblatt Nr. 252/1996: 252. Verordnung des Bundesministers für wirtschaftliche Angelegenheiten über Geräteund Schutzsysteme zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen (Explosionsschutzverordnung 1996 ExSV 1996)
- Richtlinie 97/23/EG vom 09.07.1997 (Druckgeräterichtlinie), zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Druckgeräte
- DIN 7003 in Ergänzung zu EN 378 (letzte Ausgabe Teil 1 bis 4), Kälteanlagen und Wärmepumpen mit brennbaren Kältemitttel der Gruppe L3

Überblick Kühlsysteme

Musterbeispiel in Propan Sole Technik

Bio Supermarkt in 1070 Wien

• Grün Grün Biosupermarkt – Umsetzung des Bio – Images bis ins letzte Detail!

Vorstellung der Anlage

- Kälteanlage Kälteleistung von 30 kW (-7/+40°C)
- Kältemittelfüllgewicht 3,8 kg R 290
- Füllung mit einer Sole aus Wasser und KF VP 1974
- Mischungsverhältnis 51/49 %
- Einsatzbereichsgrenze bis -20°C

Betriebskosten

- Energieeinsatz sogar geringer als Direktverdampfer durch spez. Anlagenkonzept
- Betriebspunkt bei -6°C für Vorlauf
- dabei $To = -9^{\circ}C$

Anlagenprinzip

Kältesatz als massive Verbundkonstruktion

Montage im bes. M-Raum

- Die Montage erfolgt im so genannten besonderen Maschinenraum im Maschinenraum
- Spezifikation mit Darstellung der Aufstellungsmöglichkeiten erfolgt in der EN 378 – Schlussentwurf aus 11-2003
- Belüftete Gehäuse
- Max. zul. Füllmengen It Anhang EN 378 Teil 1
- C.3 Grenzwerte für die Kältemittel-Füllmenge auf Grund der Brennbarkeit bei Komfort- Luftkonditionierern oder -Wärmepumpen

Klimanet mit arsenal research

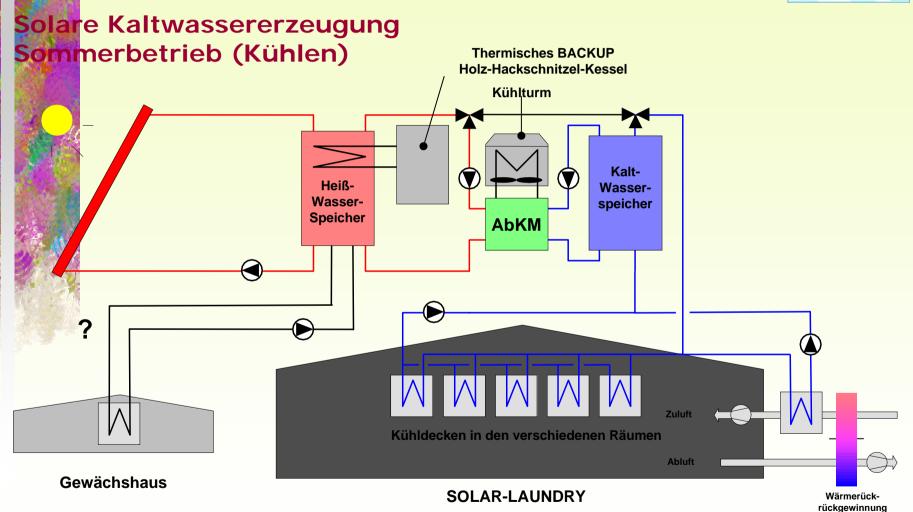
- Sorptionstechnik
- Absortionskälteanlagen
- Adsortionskälteanlagen
- SGK solar gestützte Klimatisierung
- Solarkollektortechnik
- Information für: Architektur Planung Bauträger und öffentliche Stellen
- Referenzprojekte

Solar Laundry

- Entwicklungsprojekt in Kooperation mit
 - rsenal research
 - Thema
- Solargeführte LiBr-Absorptionskühlung

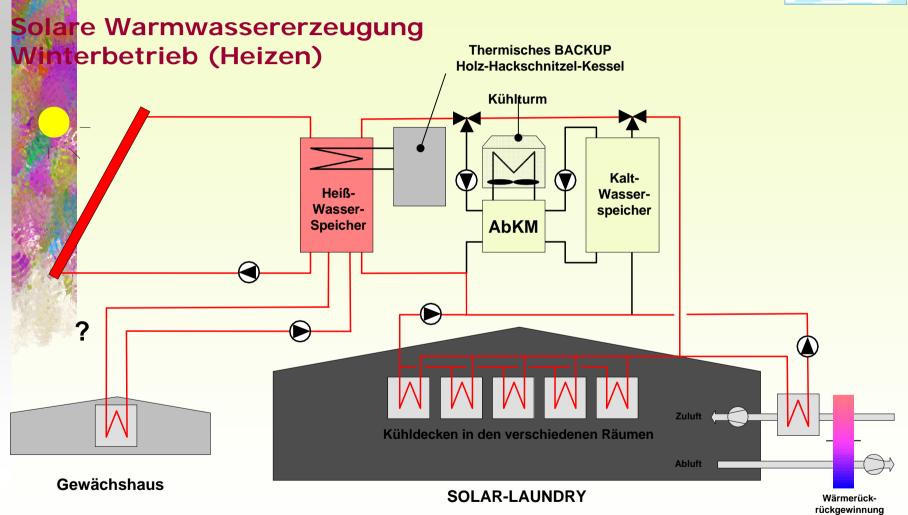
Solargeführte Kühlung

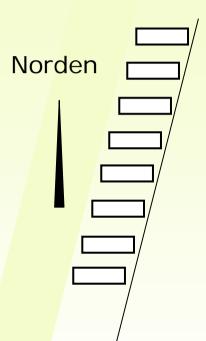
- Musterbeispiel einer Wiener Wäscherei
- Wienworks mit Solargeführter LiBr Absorption
- Energieverteilung primär über die Lüftung
- Variante mit Kühldecken in Kombination

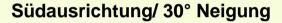


Allg. Vorstellung der Absorption

- Ein Absorptionskühler entzieht dem zu kühlenden Medium Wärme
- Dieses geschieht durch die Verdampfung eines Kältemittels
- Die zugeführte Energie zum Betreiben des Kühlers ist Wärme
- Die Förderung des Kältemittels erfolgt nicht durch einen Verdichter, sondern über einen Lösungsmittelkreislauf
- Hierzu sind vier Funktionseinheiten erforderlich
- Verdampfer und Absorber im unteren, Austreiber und Verflüssiger im oberen Behälter







Integration der Solarkollektoren Sonnen orientiert eingebunden

18

Abschätzung Kälte- und Kühllast

PROJEKT SOLAR-LAUNDRY Autor: Tim Selke/ arsenal research
Wäscherei
Wäscherei im Kopfbau EG
Ausbildung Kopfbau 1. OG

			Kälte- + k	Kühllastbere	chnung				
	ZUL		Enthalpiedifferenz						
T [°C]	X [[g/kg]	Phi [%]	H [kJ/kg]	AUL - ZUL [kJ/kg]	ABL - ZUL [kJ/kg]	Kälteleistung [kW/1000 m³]	Kühlleistung [kW/1000 m³]	Kälteleistung [kW]	Kühlleistung [kW]
18	9.51	72.8	42.11	20.96	-16.68	6.869	-5.468	96.172	-76.546
19	9.51	68.3	43.14	19.94	-15.66	6.534	-5.132	91.480	-71.854
20	9.51	64.2	44.16	18.91	-14.64	6.199	-4.797	86.788	-67.162
21	9.51	60.4	45.18	17.89	-13.61	5.864	-4.462	82.095	-62.470
22	9.51	56.8	46.20	16.87	-12.59	5.529	-4.127	77.403	-57.778
Summe							Max	96.2	-76.5
							Min	77.4	-57.8
								17.174	-13.669
								16.336	-12.831
								15.498	-11.993
								14.660	-11.155
								13.822	-10.317
Summe							Max	17.2	-13.7
							Min	13.8	-10.3
								17.174	-13.669
								16.336	-12.831
								15.498	-11.993
								14.660	-11.155
								13.822	-10.317
Luftzu			Luftzustä	nde	<u> </u>		Max	17.2	-13.7
	T	RH	sealevel	Х	Enthalpy		Min	13.8	-10.3
	°C]	%	m	g/kg	kJ/kg				
AUL	32	40	100	12.10	63.07		Maximum	130.5	-103.9
ABL	26	60		12.84	58.80		Minimum	105.0	-78.4

Analyse Solarkollektoren I

20

Abschätzung/ Abführbare Kühlleistung durch Kühldecke

PROJEKT SOLAR-LAUNDRY Autor: Tim Selke/ arsenal research	Kühldecke Berechnung der abführbaren Kühlleistung								
	Raumtemperatur - mittlere Wassertemperatur			9	10	11	12	[°C]	
Wäscherei	•	V/m²] [kW]	70.2 22.4	79 25.2	87.80 28.0	96.6 30.8	105.4 33.6		
Wäscherei im Kopfbau EG									
Wassington IIII Ropibau ES	Absolute Kühlleistung [[kW]	5.1	5.7	6.4	7.0	7.6		
Ausbildung Kopfbau 1. OG	Absolute Kühlleistung [[kW]	5.7	6.4	7.1	7.8	8.5		
	Summe [[kW]	33.2	37.3	41.5	45.6	49.8		

21

04-2004

Propan - R290

Grundlegendes

- mit guten thermodynamischen Eigenschaften
- Als Ersatz von H-FKW wie R404a,
 R507 bestens geeignet

Eigenschaften

- Brennbares Gas
- Siedepunkt -42°C
- Zündtemperatur mit Luft 510°C
- Zündgrenze (Explosionsgrenze mit Luft) 2,1 bis 9,5 Vol % Gas
- Schwerer als Luft

Propan - R290 - Aufstellung

•Auszug aus EN 378 T1-11/2003 AnhangC3

C.3.3 Besondere Anforderungen an mechanisch belüftete Gehäuse

- •Der Kältemittel-Kreislauf ist mit einem separaten Gehäuse versehen, das mit dem Raum nicht in Verbindung ist.
- •Das Gehäuse der Anlage muss mit einem Belüftungssystem versehen sein, das über einen Lüftungskanal den Luftstrom von der Innenseite der Anlage zur Außenseite führt.
- •Anlagen mit mechanisch belüfteten Gehäusen können mit Kältemitteln A2 oder A3 betrieben werden.
- •Die maximale Füllmenge für diese Anlagen darf folgenden Wert nicht überschreiten:
- •mmax = $130 \times LFL$,
- Dabei ist mmax die zulässige maximale Füllmenge, in kg;
- •LFL die untere Explosionsgrenze (LFL) in kg/m3 (lower flammability limit)
- •Praktischer Grenzwert R290 = 0,008 kg/m³, LFL R290 = 0,038 kg/m³
- •Praktischer Grenzwert R717 = 0,00035 kg/m³, LFL R290 = 0,104 kg/m³
- •Praktischer Grenzwert E170 = 0,011 kg/m³, LFL R290 = 0,064 kg/m³

04-2004

Verbesserungsmöglichkeiten

- Anlagenoptimierung
- Anhebung der Verdampfungstemperaturen
- Plusverbund: Arbeitstemperatur =
 Solevorlauftemperatur des Kälteträgers = -2°C
 (Verdampfungstemperatur –6°C), als Konsequenz
 kann die Abtauregelung in der Kühlstelle
 (Kühlmöbel) entfallen!
- Pumpenleistungen optimieren (EC-Technik)
- Soleventile 3 oder 2 Wege Ventile?
- Kältepuffer im System?

Konzeptentwicklung

- In Österreich gibt es den Förderschwerpunkt Kältetechnik
- Darin werden insbesondere derartige Konzept mit einem Fördersatz von bis zu 30 % für die Installationskosten und
- Bis zu 40 % der Planungskosten übernommen!

Vorraussetzungen

- Planung durch Fachplaner
- Konzepteinreichung vor Vergabe
- CO2-Bewertung zur Belegung der Nachhaltigkeit

Status

- Nachhaltigkeit bis ins Detail ist gefragt!
- Ein Gesamtkonzept im Bereich der techn. Gebäudeausrüstung ist erforderlich

Auszuführende Konzepte

- Nutzung der Abwärme für FBH, TRLS, Luftvorwärmung
- Lüftung mit Bedarfsregelung
- Beleuchtung in T5 Technik
- Kältetechnik Optimiert
- Temperaturmanagement Optimierung der mind. Erf. Temperaturen

Grundsätzliches

 Die Verwendung von Ammoniak oder Kohlenwasserstoffen kann nicht als fehlerhaft bezeichnet werden, da es gute ökologische Gründe gibt, sie zu verwenden. Entsprechend führt die bloße Verwendung brennbarer Kältemittel nicht zu einer Haftung des Herstellers, wenn die sicherheitstechnischen und Umweltrelevanten Voraussetzungen erfüllt werden!